391
Views
20
CrossRef citations to date
0
Altmetric
Research Article

Exploring the whereabouts of GLUT4 in skeletal muscle (Review)

&
Pages 39-49 | Published online: 09 Jul 2009

  • Aledo, J. C., Lavoie, L, Votehuk, A., Keller, S. R., KIip, A. and Hundal, H. S., 1997, Identification and characterization of two distinct intracellular GLUT4 pools in rat skeletal muscle: evidence for an endosomel and an insulin-sensitive GLUT4 compartment Biochemisty Journal. 325, 727-732.
  • Apet J., Mehlhom, G. and Schliebs, R., 1999, Insulin-sensitive GLUT4 glucose transporters are colocalized with GLUT3-expressing cells and demonstrate a chemically distinct neuron-specific localization ri rat brain. Journal of Neuroscience Research, 57, 693-705.
  • Barret M P., Walmsley, A. R. and Gould, G. W., 1999, Structure and function of facultative sugar transporters. Current Opinion in Cell Biology. 11, 496-502.
  • Baumann, C. A., Ribon, V., Kanzaki, M, Thurmond, D. C., Mora, S. Shigematsu, S., Bickel, P. E., Pessin J. E. and Saltiel, A. R., 2000, CAP defines a second signaling pathway required for insulinstimulated glucose transport. Nature, 407, 202-207.
  • Birnbaum M, 1989, Identification of a novel gene encoding an insulin-responsive glucose transporter prater. Cell. 57, 305-315.
  • Boremann, A., Ploug, T. and Schmabruch, H., 1992, Subcellular localization of GLUT4 in nonstimulated and insulin-stimulated soleus muscle of rat. Diabetes, 41, 215-221.
  • Base, A., Cherniack, A. D., Langille, S. E., Nicoloro, S. M, Buxton, J. M, Park, J. G., Chawla, A and Czech, M. P., 2001, G(alpha)11 signaing through ARF6 regulates F-actin mobilization and GLUT4 glucose transporter lranslocation to the plasma membrane. Molecular Cell Biology. 21, 5262-5275.
  • Charron, M. J., Brosius III, F. C., Alper, S. L and Lodish, H. F., 1989, A glucose transport protein expressed predominately in insulinresponsive tissues. Proceedings of the National Academy of Sciences (USA), 86, 2535-2539.
  • Coderre, L., Kandror. K. V., Vallega, G. and Pilch. P. F., 1995, Identification and characterization of an exercise-sensitive pool of glucose transporters ri skeletal muscle. Jounal of Biological Chemistry, 270, 27584-27588.
  • Cole, N. B., Sciaky, N., Marotta, A., Song, J. and LippincottSchwartz, J., 1996, Golgi dispersal during microtubule disruption: regeneration of Golgi slacks at peripheral endoplasmic reticulum exit sites. Molecular Biology of the Cell, 7, 631-650.
  • Cullen, J. J., Hollingworth, S. and Marshall, M. W., 1984, A comparative study of the transverse tubular system of the rat extensor digitorum longus and soleus muscles. Journal of Anatomy. 138, 297-308.
  • Cushman, S. W. and Wardzala, L J., 1980, Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell. Journal of Biological Chemistry, 255, 4758-4762.
  • Czech, M. P. and Corvera, S., 1999, Signaling mechanisms that regulate glucose transport. Journal of Biological Chemistry, 274, 1865-1868.
  • Daugaard, J. R. and Richter, E. A., 2001, Relationship between muscle fire composition, glucose transporter protein 4 and exercise training: passible consequences in non-insulin- dependent diabetes mellitus. Ada Physiologica Scandinavica, 171,267276.
  • Davey, D. F. and Wang, S. Y. P., 1980, Morphometric analysis of rat extensor digitorum longus and soleus muscles. Australian Journal of Experimental Biology and Medical Science. 58, 213-230.
  • DeFronzo, R. A., Bonadonna, R. C. and Ferrannini, E., 1992, Pathogenesis of NIDDM: a balanced overview. Diabetes Care. 15, 318-368.
  • Dela, F., 1996, On the influence of physical trainrig on glucose homeostasis. Acta Physiologica Scandinavica Supplement, 635, 1-41.
  • Dohm G. L, Dolan, P. L., Frisell, W. R. and Dudek, R. W., 1993, Role of transverse tubules in insulin stimulated muscle glucose transport. Journal of Cell Biochemistry, 52, 1-7.
  • Douen, A. G., Ramlal, T., Rastogi, S., Bilan, P. J., Cartee, G. D., Vranic, M, Holloszy, J. O. and Klip, A, 1990, Exercise induces recruirment of the 'insulin-responsive glucose transporter'. Evidence for distinct intracellular insulin- and exercise-recruitable transporter pools in skeletal muscle. Journal of Biological Chemistry, 265, 13427-13430.
  • Duhunty, A. F., 1984, Heterogeneity of T-tubule geometry in vertebrate skeletal muscle fibres. Journal of Muscle Research and Cell Motility, 5, 333-347.
  • Eisenberg, B. R., 1983, Quantitative ultrastructure of mammalian skeletal muscle. In Handbook of Physiology. Vol. 10, L D. Peachey, R. H. Adrian and S. R. Geiger, eds (Bethesda, MA: American Physiological Society), pp. 73-112.
  • El Messari, S., Leloup, C., Quignon, M, Brisorgueil, M-J., Penicaud, L and Arluison, M, 1998, lrrmunocytochemical localization of the insulin-responsive glucose transporter 4 (GLUT4) in the rat central nerveous system. Journal of Computational Neurology. 399,492512.
  • Emoto, M, Langille, S. E. and Czech, M P., 2001, A role for kinesin in insulin-stimulated GLUT4 glucose transporter translocation in 3t3-L1 adipocytes. Journal of Biological Chemistry, 276, 1067710682.
  • Ferrannini, E. and DeFronzo, R. A, 1997, Insulin actions in vivo: glucose metabolism. In International Textbook of Diabetes Mellitus, Vol. 1, K. G. M M Aberti, ed. (Chichester: John Wiley & Sons Ltd), pp. 505-530.
  • Fletcher, L M, Welsh, G. I., Oatey, P. B. and Tavare, J. M, 2000, Role for the microtubule cytoskeleton in GLUT4 vesicle trafficking and in the regulation of insulin-stimulated glucose uptake. Biochemistry Journal. 352, 267-276.
  • Flucher, B. E., Phillips, J. L, Powell, J. A, Andrews, S. B. and Daniels, M P., 1992, Coordinated development of myofibrils, sarcoplasmic reticulum and transverse tubules in normal and dysgenic mouse skeletal muscle, in VIVO and in vitro. Developments in Biology. 150, 266-280.
  • Franzini-Armstrong, C., 1994, The sarcoplasmic reticulum and the transverse tubules. In Mylogy, Vol. 1, A. G. Engel and C. Franzini-Armstrong, eds (MsGraw-hill, Inc.), pp. 176-222.
  • Friden, J., Seger, J. and Ekblom, B., 1989, Topographical localization of muscle glycogen: an utrahistochemica I study in the human vastus lateralis. Acta Physiologica Scandinavica, 135, 381-391.
  • Friedman, J. E., Dudek, R. W., Whitehead, D. S., Downes, D. L., Frisell, W. R., Caro, J. F. and Dohrn, L, 1991, Inmunolocalization of glucose transporter GLUT4 within human skeletal muscle. Diabetes, 40, 150-154.
  • Fukimoto, H., Kayano, T., Buse, J. B., Edwards, Y., Pilch, P. F., Bell, G. I. and Seino, S., 1989, Cloning and characterization of the major insulin-responsive glucose transporter expressed in human skeletal muscle and other insulin-responsive tissues. Journal of Biological Chemistry. 264, 7776-7779.
  • Guilherme, A., Emoto, M., Buxton, J. M. Base, S., Sabini, R., Theurkauf, W. E., Leszyk, J. and Czech, M P., 2000, Pemuclear localization and risulin responsiveness of GLUT4 requires cytoskeletal integrity ri 3T3-L1 adipocytes. Journal of Biological Chemistry, 275, 38151-38159.
  • Guillet-Deniau, I., Leturque, A. and Girard, J., 1994, Expression and cellular localization of glucose transporters (GLUT1, GLUTS, GLUT4) during differentiation of myogenic cells isolated from rat foetuses. Journal of Cell Science. 107, 487-496.
  • Hauschka, S. D., 1994, The embryonic origin of muscle. In Mylogi, Vol. 1, C. Franzini-Armstrong, ed. (New York: McGraw-Hill), pp. 3-73.
  • Hayashi, T., Wojtaszewski, J. F. and Goodyear, L J., 1997, Exercise regulation of glucose transport ri skeletal muscle. American Journal of Physiology, 273, E1039-E1051.
  • Henriksen, E. J., Bourey, R. E., Rodnick, K. J., Koranyi, L, Permutt M. A. and Holloszy, J. O., 1990, Glucose transporter protein content and glucose transport capacity ri rat skeletal muscles. American Journal of Physiology. 259, E593-E598.
  • Holman, G. D. and Sandoval, I. V., 2001, Moving the insulinregulated glucose transporter GLUT4 into and out of storage. Trends n Cellular Biology. 11,173-179.
  • James, D. E., Jenkins, A. B. and Kraegen, E. W., 1985a, Heterogeneity of iisulin action ri individual muscles in VIVO: euglycemic clamp studies ri rats. American Journal of Physiology, 248, E567-E574.
  • James, D. E., Kraegen, E. W. and Chisholm, D. J., 1985b, Muscle glucose metabolism in exercising rats: comparison with iisulin stimulation. American Journal of Physiology. 248, E575-E580.
  • James, D. E., Strube, M. and Mueckler, M, 1989, Molecular cloning and characterization of an insulin-regulatable glucose transporter. Nature, 338, 83-87.
  • Kaestner, K. H., Christy, R. J., McLenithan, J. C., Braiterman, L T., Cornelius, P., Pekala, P. H. and Lane, M D., 1989, Sequence, tissue distribution, and differential expression of mRNA for a putative insulin-responsive glucose transporter ri mouse 3T3-L1 adipocytes. Proceedings of the National Academy of Sciences (USA). 86, 3150-3154.
  • Kaisto, T., Rahkila, P., Marjomaki, V., Parton, R. G. and Metsikko, K., 1999, Endocytosis ri skeletal muscle fibers. Experimental Cell Research. 253, 551-560.
  • Kamsteeg, E. J., Heijnen, I., van Os, C. H. and Deen, P. M, 2000, The subcellular localization of an aquaporin-2 tetramer depends on the stoichiometry of phosphorylated and nonphosphorylated monomers. Journal of Cell Biology, 151, 919-930.
  • Kandror, K. V. and Pilch, P. F., 1994, gp160, a tissue-specific marker for insuin-activated glucose transport. Proceedings of the National Academy of Sciences (USA). 91, 8017-8021.
  • Keller, S. R., Scott H. M, Mastick, C. C., Aebersold, R. and Lienhard, G. E., 1995, Cloning and characterization of a novel insulin-regulated membrane aminopeptidase from Glut4 vesicles. Journal of Biological Chemistry, 270, 23612-23618.
  • Khan, A. H., Thurmond, D. C., Yang, C., Ceresa, B. P., Sigmund, C. D. and Pessri, J. E., 2001, Munc18c regulates insulin-stimulated glut4 translocation to the transverse tubules ri skeletal muscle. Journal of Biological Chemistry. 276, 4063-4069.
  • Kobayashi, M, Nikami, H., Marimatsu, M and Sate, M, 1996, Expression and localization of insulin-regubtable glucose transporter (GLUT4) in rat brain. Neuroscience Letters, 213,103-106.
  • Konrad, D., Somwar, R., Sweeney, G., Yaworsky, K., Hayashi, M, Rambl, T. and KIip, A., 2001, The antihyperglycemic drug alphalipoic acid stimulates glucose uptake via both GLUT4 translocation and GLUT4 activation: potential role of p38 mitogen-activated protein kinase in GLUT4 activation. Diabetes, 50,1464-1471.
  • Kronebusch, P. J. and Singer, S. J., 1987, The microtubuleorganizrig complex and the Golgi apparatus are co- localized around the entire nuclear envelope of interphase cardiac myocytes. Journal of Cellular Science, 88, 25-34.
  • Lawoko, G. and Tagerud, S., 1995, High endocytotic activity occurs periodically in the endplate region of denervated mouse striated muscle fibers. Experimental Cell Research. 219, 598-603.
  • Lee, A. D., Hansen, P. A., Schluter, J., Gulve, E. A., Gao, J. and Holloszy, J. O., 1997, Effects of epinephrine on insulin-stimulated glucose uptake and GLUT-4 phosphorylalion in muscle. American Journal of Physiology, 273, C1062-01087.
  • Leloup, C., Arluison, M, Kassis, N., Lepetit, N., Carder, N., Ferré, P. and Pénicaud, L, 1996, Discrete brain areas express the insulinresponsive glucose transporter GLUT4. Molecular Brain Research. 38, 45-53.
  • Lemieux, K., Man, X. X., Dombrowski, L, Bonen, A. and Marette, A., 2000, The lransferrin receptor deines two distinct conlractionresponsive GLUT4 vesicle populations in skeletal muscle. Diabetes. 49,183-189.
  • Lin, J. W., Ju, W., Foster, K., Lee, S. K, Ahmedian, G., Wyszynski, M, Wang, Y. T. and Sheng, M, 2000, Distinct molecular mechanisms and divergent endocytotic pathways of AIVPA receptor internalization. Natural Neuroscience. 3, 12821290.
  • Livingstone, C., James, D. E., Rice, J. E., Hanpeter, D. and Gould, G. W., 1996, Compartment ablation analysis of the insulinresponsive glucose transporter (GLUT4) in 3T3-L1 adipocytes. Biochemistry Journal. 315, 487-495.
  • Lu, Z., Joseph, D., Bugnard, E., Zaal, K. J. and Ralston, E., 2001, Golgi complex reorganization during muscle differentiation: visualization in living cells and mechanism Molecular Biology of the Cell, 12, 795-808.
  • Malide, D., Dwyer, M K., Blanchette Mackie, E. J. and Cushman, S. W., 1997a, lmmunocytochemical evidence that GLUT4 resides in a specialized translocation post-endosomel VAMP2positive compartment in rat adipose cells in the absence of insulin. Journal of Histochemistry and Cytochemistry, 45, 10831096.
  • Malide, D., Ramm G., Cushman, S. W. and Slot J. W., 2000, lmmunoelectron microscopic evidence that GLUT4 translocation explains the stimulation of glucose transport in isolated rat white adipose cells. Journal of Cell Science. 113, 4203-4210.
  • Malide, D., St-Denis, J. F., Keller, S. R. and Cushman, S. W., 1997b, Vp165 and GLUT4 share similar vesicle pools along their trafficking pathways in rat adipose cells. FEBS Letters, 409, 461-468.
  • Man, H. Y., Lin, J. W., Ju, W. K, Ahmadian, G., Liu, L., Becker, LE., Sheng, M and Wang, Y. T., 2000, Regulation of AMPA receptormediated synaptic transmission by clathrin- dependent receptor intemalization. Neuron, 25, 649-662.
  • Marette, A., Burdett E., Douen, A., Vranic, M and KIip, A., 1992, lnsulin induces the translocation of GLUT4 from a unique intracellular organelle to transverse tubules in rat skeletal muscle. Diabetes. 41.1562-1569.
  • Martin, S., Rice, J. E., Gould, G. W., Keller, S. R., Slot J. W. and James, D. E., 1997, The glucose transporter GLUT4 and the aminopeptidase vp165 colocalise in tubulo-vesicular elements in adipocytes and cardiomyocytes. Journal of Cellular Science, 110, 2281-2291.
  • Martin, S., Slot J. W. and James, D. E., 1999, GLUT4 trafficking in insulin-sensitive cells. A morphological review. Cell Biochemistry and Biophysics, 30, 89-113.
  • Millar, C. A., Shewan, A., Hickson, G. R., James, D. E. and Gould, G. W., 1999, Differential regulation of secretory compartments containing the insulin-responsive glucose transporter 4 in 3T3-L1 adipocytes. Molecular Biology of the Cell. 10, 3675-3688.
  • Molero, J. C., Whitehead, J. P., Meerloo, T. and James, D. E., 2001, Nocodazole inhibits insulin-stimulated glucose transport in 3T3-L1 adipocytes via a microtubule-independent mechanism. Journal of Biological Chemistry, 276, 43829-43835.
  • Molloy, S. S., Anderson, E. D., Jean, F. and Thomas, G., 1999, Bicyclrig the furin pathway: from TGN localization to pathogen activation and embryogenesis. Trends in Cell Biology, 9, 28-35.
  • Mueckler, M, 2001, lnsulin resistance and the disruption of Glut4 trafficking in skeletal muscle. Journal of Clinical Investigations, 107,1211-1213.
  • Munoz, P., Mora, S., Seville, L, Kaliman, P., Tamas, E., Guma, A., Tester, X., Palacin, M. and Zorzano, A., 1996, Expression and insulin-regulated distribution of caveolin ri skeletal muscle. Caveolin does not colocalize with GLUT4 in intracellular membranes. Journal of Biological Chemistry. 271, 8133-8139.
  • Munoz. P., Rosenblatt, M, Tester, X., Palacin, M, Thoidis, G., Pilch, P. F. and Zorzano, A, 1995b, The T-tubule is a cell-surface target for insulin-regulated recycling of membrane praters ri skeletal muscle. Biochemistry Journal, 312, 393-400.
  • Munoz, P., Rosemblatt, M, Tester, X., Palacin, M and Zorzano, A., 1995a, Isolation and characterization of distinct domains of sarcolemma and T-tubules from rat skeletal muscle. Biochemistry Journal, 307, 273-280.
  • Nesher, R., Karl, I. E. and Kipnis, D. M, 1985, Dissociation of effects of insulin and contraction on glucose transport ri rat epitrcchlearis muscle. American Journal of Physiology. 249, C233-C237.
  • Newlands, S., Levitt, L. K., Robinson, C. S., Karpf, A B., Hodgson, V. R., Wade, R. P. and Hardeman, E. C., 1998, Transcription occurs in pulses r muscle fibers. Genes Development 12, 2748-2758.
  • Olson, A L., TrumbIy, A. R. and Gibson, G. V., 2001, lnsulinmediated GLUT4 translocation is dependent on the microtubule network. Journal of Biological Chemistry, 276,10706-10714.
  • Perry, R. L and Rudnick, M A, 2000, Molecular mechanisms regulating myogenic determmation and differentiation. Frontal Bioscience. 5, D750-D767.
  • Pessin, J. E., Thurmond, D. C., Elmendorf, J. S., Coker, K. J. and Okada, S., 1999, Molecular basis of insulin-stirnulated GLUT4 vesicle trafficking: Location! Location! Location! Journal of Biological Chemistry, 274, 2593-2596.
  • Pette, D., Peuker, H. and Staren, R. S., 1999, The impact of biochemical methods for single muscle fibre analysis. Acta Physiologica Scandnavica. 166, 261-277.
  • Peyrollier, K., Hajduch, E., Gray, A., Litherland, G. J., Prescott, A. R., Leslie, N. R. and Hundal, H. S., 2000, A role for the actin cytoskeleton in the hormonal and growth-factor-mediated activation of protein kirase B. Biochemisty Journal. 352, 617-622.
  • Ploug, T. and Ralston, E., 1998, Anatomy of glucose transporters in skeletal muscle: effects of insulin and contractions. Advances in Experimental and Medical Biology, 441,17-46.
  • Ploug, T., Galbo, H., Vinten, J., Jorgensen, M and Richter, E. A., 1987, Kinetics of glucose transport in rat muscle: effects of nsulin and contractions. American Journal of Physiology, 253, E12-E20.
  • Ploug, T., Stallknecht B. M, Pedersen, O., Kahn, B. B., Ohkuwa, T., Vinten, J. and Galbo, H., 1990, Effect of endurance training on glucose transport capacity and glucose transporter expression ri rat skeletal muscle. American Journal of Physiology. 259, E778-E786.
  • Ploug, T., van Deurs, B., Ai, H., Cushman, S. W. and Ralston, E., 1998, Analysis of GLUT4 distribution n whole skeletal muscle fibers: identification of distinct storage compartments that are recruited by insuin and muscle contractions. Journal of Cell Biology. 142,1429-1446.
  • Rahkila, P., Alakangas, A, Väänänen, K. and Metsikkö, K., 1996, Transport pathway, maturation, and targetting of the vesicular stomatitis virus glycoprotein ri skeletal muscle fibers. Journal of Cell Science. 109, 1585-1596.
  • Rahkila, P., Luukela, V., Vaananen, K. and Metsikko, K. 1998, Differential targeting of vesicular stomatitis virus G protein and influenza virus hemagglutinin appears during myogenesis of L6 muscle cells. Journal of Cell Biology. 140,1101-1111.
  • Rahkila, P., Takala, T. E., Parton, R. G. and Metsikko, K., 2001, Protein targeting to the plasma membrane of adult skelete Imuscle fiber: an organized mosaic of functional domains. Experimental Cell Research. 267, 61-72.
  • Ralston, E., 1993, Changes r\ architecture of the Golgi complex and other subcellular organelles during myogenesis. Journal of Cell Biology. 120, 399-409.
  • Ralston, E. and Hall, Z. W., 1992, Restricted distribution of mRNA produced from a single nucleus in hybrid myotubes. Journal of Cellular Biology. 119, 1063-1068.
  • Ralston, E. and Ploug, T., 1996a, GLUT4 in cultured skeletal myolubes is segregated from the transferrin receptor and stored in vesicles associated with the TGN Journal of Cell Science. 109, 2967-2978.
  • Ralston, E. and Ploug, T., 1996b, Pre-errbedding staining of single muscle fibers for light and electron microscopy studies of subcellular organization. Scanning Microscopy Supplement. 10, 249-260.
  • Ralston, E. and Ploug, T., 1999, Caveolin-3 is associated with the Ttubules of mature skeletal muscle fibers. Experimental Cell Research, 246, 510-515.
  • Ralston, E., Lu, Z. and Ploug, T., 1999, The organization of the Golgi complex and microtubules in skeletal muscle is fiber type dependent Journal of Neuroscience. 19, 10694-10705.
  • Ralston, E., Ploug, T., Kalhovde, J. and Lomo, T., 2001, Golgi complex, endoplasmic reticulum exit sites, and microtubules in skeletal muscle fibers are organized by patterned activity. Journal of Neuroscience. 21, 875-883.
  • Rambourg, A., Segretain, D. and Clermont Y., 1984, Tridimensional architecture of the Golgi apparatus in the atria I muscle cell of the rat American Journal of Anatomy, 170,163-179.
  • Rea, S. and James, D. E., 1997, Moving GLUT4: the biogenesis and trafficking of GLUT4 storage vesicles. Diabetes, 46,1667-1677.
  • Richter, E. A., 1996, Glucose utilization. In Handbook of Physiology. Section 12: Exercise: Regulation and Integration of Multiple Systems, Vol. 12, L B. Rowell and J. T. Shepherd, eds (American Physiological Society. Bethesda, MD), pp. 912-951.
  • Richter, E. A., Derave, W. and Wojtaszewski, J. F., 2001, Glucose, exercise and insulin: emerging concepts. Journal of Physiology. 535, 313-322.
  • Rodnick, K. J., Slot J. W. Studelska, D. R., Hanpeter, D. E., Robrison, L J., Geuze, H. J. and James, D. E., 1992, Immunocytochemical and biochemical studies of GLUT4 in rat skeletal muscle. Journal of Biological Chemistry, 267, 62786285.
  • Ross, S. A., Scott H. M, Marris, M J., Leung, W. Y., Mao, F., Lienhard, G. E. and Keller, S. R., 1996, Characterization of the insulin-regulated membrane aminopeptidase in 3T3-L1 adipocytes. Journal of Biological Chemistry, 271, 3328-3332.
  • Roy, D. and Marette, A., 1996, Exercise induces the translocation of GLUT4 to transverse tubeles from an intracellular pool in rat skeletal muscle. Biochemistry and Biophysics Research Communications. 223, 147-152.
  • Sanes, J. R. and Lichtman, J. W., 1999, Development of the vertebrate neuromuscular junction. Annual Reviews in Neuroscience. 22, 389-442.
  • Santalucia, T., Camps, M, Castello, A., Munoz, P., Nuel, A., Tester, X., Palacin, M and Zorzano, A., 1992, Developmental regulation of GLUT-1 (erythroid/hepG2) and GLUT-4 (muscle/fat) glucose transporter expression in rat heart skeletal muscle, and brown adipose tissue. Endocrinology. 130, 837-846.
  • Sargeant R., Mtsimoto, Y., Sarabia, V., Shillabeer, G. and Klip, A., 1993, Hormonal regulation of glucose transporters in muscle cells ri culture. Journal of Endocrinology Investigations. 16,147162.
  • Schiaffino, S. and Reggiani, C., 1996, Molecular diversity of myofibrillar praters: gene regulation and functional significance. Physiology Review. 76, 371-423.
  • Schlegel, A. and Lisanti, M P., 2001, The caveolin triad: caveolae biogenesis, cholesterol trafficking, and signal transduction. Cytokine Growth Factor Review, 12, 41-51.
  • Schulingkamp, R. J., Pagano, T. C., Hung, D. and Raffa, R. B., 2000, Insulin receptors and insulin action in the brain: review and clinical implications. Neuroscience and Biobehavior Review, 24,855-872.
  • Sevilla, L., Tomes, E., Munoz, P., Guma, A., Fischer, Y., Thomas, J., Ruiz-Montasell, B., Testar, X., Palacin, M, Blasi, J. and Zorzano, A., 1997, Characterization of two distinct intracellular GLUT4 membrane populations in muscle fiber. Differential protein composition and sensitivity to insulin. Endocrinology, 138, 30063015.
  • Simpson, F., Whitehead, J. P. and James, D. E., 2001, GLUT4-at the cross roads between membrane trafficking and signal transduction. Traffic, 2, 2-11.
  • Slot J. W., Geuze, H. J., Gigengack, S., James, D. E. and Lienhard, G. E., 1991a, Translocation of the glucose transporter GLUT4 in cardiac myocytes of the rat. Procedings of the National Academy of Sciences (USA), 88, 7815-7819.
  • Slot, J. W., Geuze, H. J., Gigengack, S., Lienhard, G. E. and James, D. E., 1991b, Immuno-localization of the insulin regulatable glucose transporter ri brown adipose tissue of the rat. Journal of Cell Biology, 113,123-135.
  • Suarez, E., Bach, D., Cadefau, J., Palacin, M, Zorzano, A. and Guma, A., 2001, A novel role of neuregulin ri skeletal muscle. Neuregulin stimulates glucose uptake, glucose transporter translocation, and transporter expression in muscle cells. Journal of Biological Chemistry, 276,18257-18264.
  • Suzuki, K. and Kono, T., 1980, Evidence that insulin causes trans location of glucose transport activity to the plasma membrane from an intracellular storage site. Proceedings of the National Academy of Sciences (USA), 77, 2542-2545.
  • Takata, K., Ezaki, O. and Hirano, H., 1992, Immunocytochernical localization of fat/muscle-type glucose transporter (GLUT4) ri the rat skeletal muscle: effect of insulin treatment. Acta Histochemica et Cytochemica. 25, 689-696.
  • Tassin, A. M, Paintrand, M, Berger, E. G. and Bomens, M, 1985, The Golgi apparatus remains associated with microtubule organizing centers during myogenesis. Journal of Cell Biology, 101, 630-638.
  • Tomas, E., Sevilla, L, Palacin, M and Zorzano, A., 2001, The insulin-sensitive GLUT4 storage comparlment is a postendocytic and heterogeneous population recruited by acute exercise. Biochemistry and Biophysics Research Communications. 284, 490-495.
  • Tsakiridis, T., Vranic, M. and Klip, A, 1994, Disassembly of the actin network inhibits insulin-dependent stimulation of glucose transport and prevents recruitment of glucose transporters to the plasma membrane. Journal of Biological Chemistry, 269, 29934-29942.
  • Tsakridis, T., Wang, Q., Taha, C., Grinstein, S., Downey, G. and Klip, A., 1997, Involvement of the actin network in insulin signalling. Society of General Physiology Series. 52, 257-271.
  • Turrigiano, G. G., 2000, AMPA receptors unbound: membrane eyeing and synaptic plasticity. Neuron, 26, 5-8.
  • Vissing, J., Andersen, M. and Diemer, N. H., 1996, Exercise-induced changes in local cerebral glucose utilization in the rat. Journal of Cerebral Blood Flow Metabolism, 16, 729-736.
  • Wang, W., Hansen, P. A., Marshall, B. A., Holloszy, J. O. and Mueckler, M, 1996, Insulin unmasks a COOH-terminal GLUT4 epitope and increases glucose transport across T-tubules in skeletal muscle. Journal of Cellular Biology. 135, 415-430.
  • Watson, R. T., Shigematsu, S., Chiang, S. H., Mare, S., Kanzaki, M, Macara, I. G., Saltiel, A. R. and Pessin, J. E., 2001, Lipid raft microdomain compartment lization of TC10 is required for insulin signaling and GLUT4 translocation. Journal of Cellular Biology. 154, 829-840.
  • Wei, M. L, Bonzelius, F. Scully, R. M., Kelly, R. B. and Herman, G. A., 1998, GLUT4 and transferrin receptor re differentially sorted along the endocytic pathway in CHO cells. Journal of Cell Biology, 140, 565-575.
  • Zorzano, A., Fandos, C. and Palacin, M, 2000, Role of plasma membrane tranporters in muscle metabolism. Biochemistry Journal. 349, 667-688.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.