238
Views
41
CrossRef citations to date
0
Altmetric
Original Paper

Direct block of the cystic fibrosis transmembrane conductance regulator Cl channel by niflumic acid

, , , &
Pages 27-38 | Received 19 Mar 2003, Accepted 07 May 2003, Published online: 09 Jul 2009

References

  • Lehtinen, K., Ollikainen, A., Savolainen, L., Waris, T., Laine, V. and Clarke, T. K., 1973, Niflumic acid in the treatment of rheumatoid arthritis. Scand. J. Rheumatol. Suppl., 1, 5 –7.
  • Hardman, J. G. and Limbird, L. E., 1996, Goodman & Gilman’s The Pharmacological Basis of Therapeutics (McGraw-Hill, New York).
  • Cousin, J. L. and Motais, R., 1979, Inhibition of anion perme- ability by amphiphilic compounds in human red cell: evidence for an interaction of niflumic acid with the band 3 protein. J. Membr. Biol., 46, 125 –153.
  • White, M. M. and Aylwin, M., 1990, Niflumic and flufenamic acids are potent reversible blockers of Ca2+-activated Cl- channels in Xenopus oocytes. Mol. Pharmacol., 37, 720 –724.
  • Frings, S., Reuter, D. and Kleene, S. J., 2000, Neuronal Ca2+- activated Cl- channels *homing in on an elusive channel species. Prog. Neurobiol., 60, 247 –289.
  • Riordan, J. R., Rommens, J. M., Kerem, B.-S., Alon, N., Rozmahel, R., Grzelczak, Z., Zielenski, J., Lok, S., Plavsic, N., Chou, J.-L., Drumm, M. L., Iannuzzi, M. C., Collins, F. S. and Tsui, L.-C., 1989, Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science, 245, 1066–1073.
  • McCarty, N. A., McDonough, S., Cohen, B. N., Riordan, J. R., Davidson, N. and Lester, H. A., 1993, Voltage-dependent block of the cystic fibrosis transmembrane conductance regulator Cl- channel by two closely related arylaminobenzoates. J. Gen. Physiol., 102, 1 –23.
  • McDonough, S., Davidson, N., Lester, H. A. and McCarty, N. A., 1994, Novel pore-lining residues in CFTR that govern permea- tion and open-channel block. Neuron, 13, 623 –634.
  • Welsh, M. J., Ramsey, B. W., Accurso, F. and Cutting, G. R., 2001, Cystic fibrosis. In C. R. Scriver, A. L. Beaudet, W. S. Sly and D. Valle, eds The Metabolic and Molecular Basis of Inherited Disease (McGraw-Hill, New York), pp. 5121 –5188.
  • Qian, Q., Harris, P. C. and Torres, V. E., 2001, Treatment prospects for autosomal-dominant polycystic kidney disease. Kidney Int., 59, 2005 -2022.
  • Gabriel, S. E., Brigman, K. N., Koller, B. H., Boucher, R. C. and Stutts, M. J., 1994, Cystic fibrosis heterozygote resistance to cholera toxin in the cystic fibrosis mouse model. Science, 266, 107 –109.
  • Cuthbert, A. W., Evans, M. J., Colledge, W. H., MacVinish, L. J. and Ratcliff, R., 1994, Kinin-stimulated chloride secretion in mouse colon requires the participation of CFTR chloride channels. Braz. J. Med. Biol. Res., 27, 1905 –1910.
  • Shuba, L. M., Asai, T., Pelzer, S. and McDonald, T. F., 1996, Activation of cardiac chloride conductance by the tyrosine kinase inhibitor, genistein. Br. J. Pharmacol., 119, 335 –345.
  • Marshall, J., Fang, S., Ostedgaard, L. S., O’Riordan, C. R., Ferrara, D., Amara, J. F., Hoppe iv, H., Scheule, R. K., Welsh, M. J., Smith, A. E. and Cheng, S. H., 1994, Stoichiometry of recombinant cystic fibrosis transmembrane conductance reg- ulator in epithelial cells and its functional reconstitution into cells in vitro. J. Biol. Chem., 269, 2987 –2995.
  • Bebo¨k, Z., Tousson, A., Schwiebert, L. M. and Venglarik, C. J., 2001, Improved oxygenation promotes CFTR maturation and trafficking in MDCK monolayers. Am. J. Physiol., 280, C135C145.
  • Grantham, J. J., Uchic, M., Cragoe Jr, E. J., Kornhaus, J., Grantham, J. A., Donoso, V., Mangoo-Karim, R., Evan, A. and McAteer, J., 1989, Chemical modification of cell proliferation and fluid secretion in renal cysts. Kidney Int., 35, 1379 –1389.
  • Lansdell, K. A., Cai, Z., Kidd, J. F. and Sheppard, D. N., 2000, Two mechanisms of genistein inhibition of cystic fibrosis transmembrane conductance regulator Cl- channels ex-pressed in murine cell line. J. Physiol., 524, 317 –330.
  • Sheppard, D. N. and Robinson, K. A., 1997, Mechanism of glibenclamide inhibition of cystic fibrosis transmembrane con- ductance regulator Cl- channels expressed in a murine cell line. J. Physiol., 503, 333 –346.
  • Venglarik, C. J., Schultz, B. D., DeRoos, A. D. G., Singh, A. K. and Bridges, R. J., 1996, Tolbutamide causes open channel blockade of cystic fibrosis transmembrane conductance regu- lator Cl- channels. Biophys. J., 70, 2696 -2703.
  • Fischer, H. and Machen, T. E., 1994, CFTR displays voltage dependence and two gating modes during stimulation. J. Gen. Physiol., 104, 541 –566.
  • Venglarik, C. J., Schultz, B. D., Frizzell, R. A. and Bridges, R. J., 1994, ATP alters current fluctuations of cystic fibrosis trans- membrane conductance regulator: evidence for a three-state activation mechanism. J. Gen. Physiol., 104, 123 –146.
  • Lindemann, B. and Van Driessche, W., 1977, Sodium-specific membrane channels of frog skin are pores: current fluctuations reveal high turnover. Science, 195, 292 –294.
  • Linsdell, P. and Gong, X., 2002, Multiple inhibitory effects of Au(CN)2- ions on cystic fibrosis transmembrane conductance regulator Cl- channel currents. J. Physiol., 540, 29 –38.
  • Cai, Z. and Sheppard, D. N., 2002, Phloxine B interacts with the cystic fibrosis transmembrane conductance regulator at multiple sites to modulate channel activity. J. Biol. Chem., 277, 19546- 19553.
  • Walsh, K. B., Long, K. J. and Shen, X., 1999, Structural and ionic determinants of 5-nitro-2-(3-phenylpropylamino)-benzoic acid block of the CFTR chloride channel. Br. J. Pharmacol., 127, 369 –376.
  • Woodhull, A. M., 1973, Ionic blockage of sodium channels in nerve. J. Gen. Physiol., 61, 687 –708.
  • Zeltwanger, S., Wang, F., Wang, G.-T., Gillis, K. D. and Hwang, T.-C., 1999, Gating of cystic fibrosis transmembrane conduc- tance regulator chloride channels by adenosine triphosphate hydrolysis: quantitative analysis of a cyclic gating scheme. J.
  • Qu, Z. and Hartzell, H. C., 2001, Functional geometry of the permeation pathway of Ca2+-activated Cl- channels inferred from analysis of voltage-dependent block. J. Biol. Chem., 276, 18423–18429.
  • Hogg, R. C., Wang, Q. and Large, W. A., 1994, Action of niflumic acid on evoked and spontaneous calcium-activated chloride and potassium currents in smooth muscle cells from rabbit portal vein. Br. J. Pharmacol., 112, 977 –984.
  • Collier, M. L., Levesque, P. C., Kenyon, J. L. and Hume, J. R., 1996, Unitary Cl- channels activated by cytoplasmic Ca2+ in canine ventricular myocytes. Circ. Res., 78, 936 –944.
  • Hille, B., 2001, Ion Channels of Excitable Membranes ( Sinauer Associates, Sunderland, MA).
  • Linsdell, P. and Hanrahan, J. W., 1996, Disulphonic stilbene block of cystic fibrosis transmembrane conductance regulator Cl- channels expressed in a mammalian cell line and its regulation by a critical pore residue. J. Physiol., 496, 687 –693.
  • Zhou, S.-S., Takai, A., Tominaga, M. and Okada, Y., 1997, Phosphatase-mediated enhancement of cardiac cAMP-acti- vated Cl- conductance by a Cl- channel blocker, anthra- cene-9-carboxylate. Circ. Res., 81, 219 –228. within the cystic fibrosis transmembrane conductance regulator Cl- channel pore. J. Physiol., 540, 39 –47.
  • Linsdell, P., 2000, Inhibition of cystic fibrosis transmembrane conductance regulator chloride channel currents by arachado- nic acid. Can. J. Physiol. Pharmacol., 78, 490 –499.
  • Linsdell, P. and Hanrahan, J. W., 1998, Adenosine tripho-sphate-dependent asymmetry of anion permeation in the cystic fibrosis transmembrane conductance regulator chloride chan- nel. J. Gen. Physiol., 111, 601 –614.
  • Gong, X., Burbridge, S. Cowley, E. Linsdell, P., 2002, Gen. Physiol., 113, 541 –554. Molecular determinants of Au(CN)2 binding and permeability
  • Cotten, J. F. and Welsh, M. J., 1999, Cystic fibrosis-associated mutations at arginine 347 alter the pore architecture of CFTR: evidence for disruption of a salt bridge. J. Biol. Chem., 274, 5429–5435.
  • Richards, N. W. and Dawson, D. C., 1993, Selective block of specific K+-conducting channels by diphenylamine-2-carbox- ylate in turtle colon epithelial cells. J. Physiol., 462, 715 –734.
  • Go¨ gelein, H., Dahlem, D., Englert, H. C. and Lang, H. J., 1990, Flufenamic acid, mefenamic acid and niflumic acid inhibit single nonselective cation channels in the rat exocrine pancreas. FEBS Lett., 268, 79 –82.
  • Devor, D. C. and Schultz, B. D., 1998, Ibuprofen inhibits cystic fibrosis transmembrane conductance regulator-mediated Cl- secretion. J. Clin. Invest., 102, 679 –687.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.