313
Views
31
CrossRef citations to date
0
Altmetric
Original Paper

Techniques and applications of NMR to membrane proteins (Review)

, &
Pages 129-141 | Received 16 Jan 2004, Published online: 09 Jul 2009

References

  • Almeida, F. C. L. and Opella, S. J., 1997, fd coat protein structure in membrane environments: Structural dynamics of the loop be- tween the hydrophobic trans-membrane helix and the amphipatic in-plane helix. J. Mol. Biol., 270, 481 –495.
  • Arora, A., Abildgaard, F., Bushweller, J. H. and Tamm, L. K., 2001, Structure of outer membrane protein A transmembrane domain by NMR spectroscopy. Nat. Struct. Biol., 8, 334 –338.
  • Bak, M., Rasmussen, J. T. and Nielsen, N. C., 2000, SIMPSON: a general simulation program for solid-state NMR spectroscopy, J. Magn. Reson., 147, 296 –330. Open-source software, available at: http://www.bionmr.chem.au.dk.
  • Bak, M., Bywater, R. P., Hohwy, M., Thomsen, J. K., Adelhorst, K., Jakobsen, H. J., Sørensen, O. W. and Nielsen, N. C., 2001, Conformation of alamethicin in oriented phospholipids bilayers determined by 15N solid-state nuclear magnetic resonance. Biophys. J., 81, 1684 -1698.
  • Bak, M., Schultz, R., Vosegaard, T. and Nielsen, N. C., 2002, Specification and visualization of anisotropic interaction tensors in polypeptides and numerical simulations in biological solid-state NMR, J. Magn. Reson., 154, 28 –45. Open-source software, available at: http://www.bionmr.chem.au.dk.
  • Baldus, M., 2002, Correlation experiments for assignment and structure elucidation of immobilized polypeptides under magic angle spinning. Prog Nucl. Magn. Reson. Spectrosc., 41, 1 –47. Bechinger, B. and Sizun, C., 2003, Alignment and structural analysis of membrane polypeptides by 15N and 31P solid-state NMR spectroscopy. Concepts Magn. Reson., 18A, 130 -145.
  • Bechinger, B., Zasloff, M. and Opella, S. J., 1993, Structure and orientation of the antibiotic peptide magainin in membranes by solid-state nuclear magnetic resonance spectroscopy. Prot. Sci., 7, 2077 -2084.
  • Bechinger, B., Skladnev, D. A., Ogrel, A., Li, X., Rogozhkina, E. V., Ovchinnikova, T. V., O’Neil, D. J. and Raap, J., 2001, 15N and 31P solid-state NMR investigations on the orientation of zervamicin II and alamethicin in phoshatidylcholine membranes. Biochemistry, 40, 9428 -9437.
  • Bennett, A. E., Griffin, R. G. and Vega, S., 1994, Recoupling of homo- and heteronuclear dipolar interactions in rotating solids. In NMR Basic Principles and Progress, Vol. 33. G. A. Webb, ed. (Springer-Verlag, Berlin), pp. 1 –77.
  • Bernstein, F. C., Koetzle, T. F., Williams, G. J., Meier, E. E., Jr., Brice, M. D., Rodgers, J. R., Kennard, O., Shimanouchi, T. and Tasumi, M., 1977, The protein data bank: a computer based archival file for macromolecular structures, J. Mol. Biol., 112, 535 –542. Online. Available: http://www.rcsb.org/pdb.
  • Bjerring, M., Vosegaard, T., Malmendal, A. and Nielsen, N. C., 2003, Methodological development of solid-state NMR for characterization of membrane proteins. Concepts Magn. Reson., 18A, 111 – 129.
  • Bo¨ckmann, A., Lange, A., Galinier, A., Luca, S., Giraud, N., Juy, M., Heise, H., Montserret, R., Penin, F. and Baldus, M., 2003, Solid state NMR sequential resonance assignments and conforma- tional analysis of the 2 x10.4 kDa dimeric form of the Bacillus subtilis protein Crh. J. Biomol. NMR, 27, 323 –339.
  • Braun, W., Wider, G., Lee, K. H. and Wu¨ thrich, K., 1983, Conforma- tion of glucagon in a lipid-water interphase by 1H nuclear magnetic resonance. J. Mol. Biol., 169, 921 –948.
  • Castellani, F., van Rossum, B., Diehl, A., Schubert, M., Rehbein, K. and Oschkinat, H., 2002, Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature, 420, 98 –102.
  • Cavanagh, J., Fairbrother, W. J., Palmer, A. G., III and Skelton, N. J., 1996, Protein NMR Spectroscopy: Principles and Practice (Aca- demic Press, San Diego).
  • Creuzet, F., McDermott, A. E., Gebhard, R., van der Hoef, K., Spijker-Assink, M. B., Herzfeld, J., Lugtenburg, J., Levitt, M. H. and Griffin, R. G., 1991, Determination of membrane protein structure by rotational resonance NMR: bacteriorhodopsin. Science, 251, 783 –786.
  • Davis, J. H. and Auger, M., 1999, Static and magic angle spinning NMR of membrane peptides and proteins. Prog. Nucl. Magn. Reson. Spectrosc., 35, 1 –84.
  • deAzevedo, E. R., Bonagamba, T. J. and Schmidt-Rohr, K., 2000, Pure-exchange solid-state NMR. J. Magn. Reson., 142, 86 –96.
  • Doyle, D. A., Cabral, J. M., Pfuetzner, Kuo, A. L., Gulbis, J. M., Cohen, S. L., Chait, B. T. and McKinnon, R., 1998, The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science, 280, 69 –77.
  • Dusold, S. and Sebald, A., 2001, Dipolar recoupling under magic angle spinning conditions. Ann. Rep. NMR Spectrosc., 41, 185 – 264.
  • Faham, S. and Bowie, J. U., 2002, Bicelle crystallization: a new method for crystallizing membrane proteins yields a monomeric bacteriorhodopsin structure. J. Mol. Biol., 316, 1 –6.
  • Ferna´ ndez, C. and Wu¨ thrich, K., 2003, NMR solution structure determination of membrane proteins reconstituted in detergent micelles. FEBS Lett., 555, 144 –150.
  • Ferna´ ndez, C., Adeishvili, K. and Wu¨ thrich, K., 2001, Transverse relaxation-optimized NMR spectroscopy with the outer membrane protein OmpX in dihexanoyl phosphatidylcholine micelles. Pro. Natl Acad. Sci. USA, 98, 2358 -2363.
  • Ferna´ ndez, C., Hilty, C., Wider, G. and Wu¨ thrich, K., 2002, Lipid- protein interactions in DHPC micelles containing the integral membrane protein OmpX investigated by NMR spectroscopy. Proc. Natl Acad. Sci USA, 99, 13533–13537.
  • Fiaux, J., Bertelsen, E. B., Horwich, A. L. and Wu¨ thrich, K., 2002, NMR analysis of a 900K GroEL GroES complex. Nature, 418, 207 –211.
  • Gardner, K. H., Rosen, M. K. and Kay, L. E., 1997, Global folds of highly deuterated, methyl-protonated proteins by multidimen- sional NMR. Biochemistry, 36, 1389 -1401.
  • Girvin, M. E., Rastogi, V. K., Abildgaard, F., Markley, J. L. and Fillingame, R. H., 1998, Solution structure of the transmembrane H+-transporting subunit c of the F1Fo ATP synthase. Biochem- istry, 37, 8817–8824.
  • Griffin, R. G., 1998, Dipolar recoupling in MAS spectra of biological solids. Nat. Struct. Biol., 5, 508 –512.
  • Gro¨ bner, G., Taylor, A., Williamson, P. T., Choi, G., Glaubitz, C., Watts, J. A., de Grip, W. J. and Watts, A., 1997, Macroscopic orientation of natural and model membranes for structural studies. Analyt. Biochem., 254, 132 –138.
  • Gro¨ bner, G., Burnett, I. J., Glaubitz, C., Choi, G., Mason, A. J. and Watts, A., 2000, Observations of light-induced structural changes of the retinal within rhodopsin. Nature, 405, 810 –813.
  • Haeberlen, U. and Waugh, J. S., 1968, Coherent averaging effects in magnetic resonance. Phys. Rev., 175, 453 –467.
  • Hebert, H., Purhonen, P., Vorum, H., Thomsen, K. and Maunsbach, A. B., 2001, Three-dimensional structure of renal Na,K-ATPase from cryo-electron microscopy of two-dimensional crystals. J. Mol. Biol., 314, 479 –494.
  • Hohwy, M. and Nielsen, N. C., 1998, Systematic evaluation and design of multiple-pulse experiments in nuclear magnetic reso- nance spectroscopy using a semi-continuous Baker-Campbell- Hausdorff expansion. J. Chem. Phys., 109, 3780 -3791.
  • Hohwy, M., Jakobsen, H. J., Ede´ n, M., Levitt, M. H. and Nielsen, N. C., 1998, Broadband dipolar recoupling in the nuclear magnetic resonance of rotating powders: A compensated C7 pulse se- quence. J. Chem. Phys., 108, 2686 –2694.
  • Hwang, P. M., Choy, W.-Y., Eileen, I. L., Chen, L., Forman-Kay, J. D., Raetz, C. R. H., Prive´, G. G., Bishop, R. E. and Kay, L. E., 2002, Solution structure and dynamics of the outer membrane enzyme PagP by NMR. Proc. Natl Acad. Sci. USA, 99, 13560- 13565.
  • Jaroniec, C. P., MacPhee, C. E., Baja, V. S., McMahon, M. T., Dobson, C. M. and Griffin, R. G., 2004, High-resolution molecular structure of a peptide in an amyloid fibril determined by magic angle spinning NMR spectroscopy. Proc. Natl Acad. Sci. USA, 101, 711 –716.
  • Ketchem, R. R., Lee, K. C., Huo, S. and Cross, T. A., 1996, Macromolecular structural elucidation with solid-state NMR-de- rived orientational constraints. J. Biomol. NMR, 8, 1 –14.
  • Lee, S., Mesleh, M. F. and Opella, S. J., 2003, Structure and dynamics of a membrane protein in micelles from three solution NMR experiments. J. Biomol. NMR, 26, 327 –334.Lee, Y. K., Kurur, N. D., Helmle, M., Johannesen, O. G., Nielsen, N. C. and Levitt, M. H., 1995, Efficient dipolar recoupling in the NMR of rotating solids. A sevenfold symmetric radiofrequency pulse sequence. Chem. Phys. Lett., 242, 304 –309.
  • Levitt, M. H., 2002, Symmetry-based pulse sequences in magic- angle spinning solid-state NMR. In Encyclopedia of Nuclear Magnetic Resonance: Supplementary Volume. D. M. Grant andR. K. Harris, eds. (Wiley, Chichester), pp. 165 –196.
  • Luecke, H., Schobert, B., Richter, H. T., Cartailler, J. P. and Lanyi, J. K., 1999, Structure of bacteriorhodopsin at 1.55 A resolution. J. Mol. Biol., 291, 899 –911.
  • Ma, C. and Opella, S. J., 2000, Lanthanide ions bind specifically to an added ‘EF-hand’ and orient a membrane protein in micelles for solution NMR spectroscopy. J. Magn. Reson., 146, 381 –384.McDermott, A. E., Polenova, T., Bo¨ ckmann, A, Zilm, K. W., Martin,
  • R. W., Montelione, G. T. and Paulsen, E. K., 2000, Partial NMR assignments for uniformly (13C,15N)-enriched BPTI in the solid- state. J. Biomol. NMR, 16, 209 –219.
  • McDowell, L. M., Lee, M. S., McKay, R. A., Anderson, K. S. and Schaefer, J., 1996, Intersubunit communication in tryptophan synthase by carbon-13 and fluorine-19 REDOR NMR. Biochem- istry, 35, 3328 -3334.
  • MacKenzie, K. R., Prestegard, J. H. and Engelman, D. M., 1997, A transmembrane helix dimmer: structure and implications. Science, 276, 131 –133.
  • Marassi, F. M. and Opella, S. J., 2000, A solid-state NMR index of helical membrane protein structure and topology. J. Magn. Reson., 144, 150 –155.
  • Marassi, F. M. and Opella, S. J., 2003, Simultaneous assignment and structure determination of a membrane protein from NMR orientational restraints. Prot. Sci., 12, 403 –411.
  • Marassi, F. M., Gesell, J. J., Valente, A. P., Kim, Y., Oblatt-Montal, M. and Opella, S. J., 1999, Dilute spin-exchange assignment of solid-state NMR spectra of oriented proteins: acetylcholine M2 in bilyaers. J. Biomol. NMR, 14, 141 –148.
  • Martin, R. W. and Zilm, K. W., 2003, Preparation of protein nanocrystals and their characterization by solid state NMR. J. Magn. Reson., 165, 162 –174.
  • Matthey, U., Kaim, G., Braun, D., Wu¨ thrich, K. and Dimroth, P., 1999, NMR studies of subunit c of the ATP synthase from Propionigenium modestrum in dodecylsulphate micelles. Eur. J. Biochem., 261, 459 –467.
  • Mesleh, M. F., Lee, S., Veglia, G., Thiriot, D. S., Marassi, F. and Opella, S. J., 2003, Dipolar waves map the structure and topology of helices in membrane proteins. J. Am. Chem. Soc., 125, 8928- 8935.
  • Montal, M. and Opella, S. J., 2002, The structure of the M2 channel- lining segment from the nicotinic acetylcholine receptor. Biochem. Biophys. Acta, 1565, 287 –293.
  • Murata, K., Kitsuoka, K., Hirai, T., Walz, T., Agre, P., Heymann, J. B., Engel, A. and Fujiyoshi, Y., 2000, Structural determinants of water permeation through aquaporin-1. Nature, 407, 599 –605.
  • Nielsen, G., Malmendal, A., Meissner, A., Møller, J. V. and Nielsen, N. C., 2003, NMR studies of the fifth transmembrane segment of sarcoplasmic reticulum Ca2+-ATPase reveals a hinge close to the Ca2+-ligating residues. FEBS Lett., 544, 50 –56.
  • Nielsen, N. C., Bildsøe, H., Jakobsen, H. J. and Levitt, M. H., 1994, Double-quantum homonuclear rotary resonance: efficient dipolar recovery in magic-angle spinning nuclear magnetic resonance. J. Chem. Phys., 101, 1805 –1812.
  • Nielsen, N. C., Daugaard, P., Langer, V., Thomsen, J. K., Nielsen, S., Sørensen, O. W. and Jakobsen, H. J., 1995, A flat-coil NMR probe with hydration control of oriented phospholipid bilayer samples. J. Biomol. NMR, 5, 311 –314.
  • Nishimura, K., Kim, S., Zhang, L. and Cross, T. A., 2002, The closed state of a H+ channel helical bundle combining precise orienta- tional and distance restraints from solid-state NMR. Biochemistry, 41, 13170–13177.
  • North, C. L, Barranger-Matthys, M. and Cafiso, D. S., 1995, Membrane orientation of the N-terminal segment of alamethicin determined by solid-state 15N NMR. Biophys. J., 69, 2392 –2397. Opella, S. J., 1997, NMR and membrane proteins. Nat. Struct. Biol., 4, 845 -848.
  • Opella, S. J., Marassi, F. M., Gesell, J. J., Valente, A. P., Kim, Y., Oblatt-Montal, M. and Montal, M., 1999, Structures of the M2 channel-lining segments from nicotinic acetylcholine and NMDA receptors by NMR spectroscopy. Nat. Struct. Biol., 6, 374 –379.
  • Oxenoid, K., So¨ nnichsen, F. D. and Sanders, C. R., 2002, Topology and secondary structure of the N-terminal domain of diacylgly- cerol kinase. Biochemistry, 41, 12876 –12882.
  • Palczewski, K., Kumasaka, T., Hori, T., Behnke, C. A., Motoshima, H., Fox, B. A., Le Trong, I., Teller, D. C., Okada, T., Stenkamp, R. E., Yamamoto, M. and Miyano, M., 2000, Crystal structure of rhodopsin: a G-protein-coupled receptor. Science, 289, 739 –745. Papavoine, C. H. M., Christiaans, B. E. C., Folmer, R. H. A., Konings, R. N. H. and Hilbers, C. W., 1998, Solution structure of the M13 major coat protein in detergent micelles: a basis for a model of phage assembly involving specific residues. J. Mol. Biol., 282, 401 -419.
  • Park, S. H., Mrse, A. A., Nevzorov, A., Mesleh, M. F., Oblatt-Montal, M., Montal, M. and Opella, S. J., 2003, Three-dimensional structure of the channel-forming trans-membrane domain of virus protein ‘u’ (Vpu) from HIV-1. J. Mol. Biol., 333, 409 –424.
  • Pauli, J., van Rossum, B., Forster, H., de Groot, H. J. and Oschkinat, H., 2000, Sample optimization and identification of signal patterns of amino acid side chains in 2D RFDR spectra of the alpha- spectrin SH3 domain. J. Magn. Reson., 143, 411 –416.
  • Pervushin, K. V., Orekhov, V. Y., Popov, A. I., Musina, L. Y. and Arseniev, A. S., 1994, Three-dimensional structure (1-71)bacter- ioopsin solubilized in methanol/chloroform and SDS micelles determined by 15N-1H heteronuclear NMR spectroscopy. Eur. J. Biochem., 219, 571 –583.
  • Pervushin, K., Riek, R., Wider, G. and Wu¨ thrich, K., 1997, Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc. Natl Acad. Sci. USA, 94, 12366 –12371.
  • Rienstra, C. M., Tucker-Kellogg, L., Jaroniec, C. P., Hohwy, M., Reif, B., McMahon, M. T., Tidor, B., Lozano-Perez, T. and Griffin, R. G., 2002, De novo determination of peptide structure with solid- state magic-angle spinning NMR spectroscopy. Proc. Natl Acad. Sci. USA, 99, 10260–10265.
  • Russell, R. B. and Eggleston, D. S., 2000, New roles for structures in biology and drug discovery. Nat. Struct. Biol., 7, 928 –930.
  • Scheuring, S., Mu¨ ller, D. J., Stahlberg, H., Engel, H. A. and Engel, A., 2002, Sampling the conformational space of membrane protein surfaces with the AFM. Eur. Biophys. J., 31, 172 –178.
  • Schiller, P. and Mo¨ gel, H.-J., 2000, Indirect interaction of colloidal molecules adsorbed on solft surfaces. Phys. Chem. Chem. Phys., 2, 4563 –4568.
  • Siminovitch, D., Untidt, T. and Nielsen, N. C., 2004, Exact effective Hamiltonian theory. II. Polynomial expansion of matrix functions and entangled unitary exponential operators. J. Chem. Phys., 120, 51 –68.
  • Smith, S. O. and Bormann, B. J., 1995, Determination of helix-helix interactions in membranes by rotational resonance NMR. Proc. Natl Acad. Sci USA, 92, 488 –491.
  • Sorgen, P. L., Cahill, S. M., Krueger-Koplin, R. D., Schenck, C. C. and Girvin, M. E., 2002, Structure of the Rhodobacter sphaer- oides light-harvesting 1 b subunit in detergent micelles. Biochem- istry, 41, 31 -41.
  • Straus, S. K., Scott, W. R. P. and Watts, A., 2003, Assessing the effects of time and spatial averaging in 15N chemical shift/15N-1H dipolar correlation solid state NMR experiments. J. Biomol. NMR, 26, 283 –295.
  • Subramaniam, S. and Henderson, R., 2000, Molecular mechanism of vectorial proton translocation by bacteriorhodopsin. Nature, 406, 653 –657.
  • Tamm, L. K., Abildgaard, F., Arora, A., Blad, H. and Buschweller, J. H., 2003, Structure, dynamics and function of the outer mem- brane protein A (OmpA) and influenza hemagglutinin fusion domain in detergent micelles by solution NMR. FEBS Lett., 555, 139 –143.
  • Toyshima, C. and Nomura, H., 2002, Structural changes in the calcium pump accompanying the dissociation of calcium. Nature, 418, 605 –611.
  • Toyshima, C., Nakasako, M., Nomura, H. and Ogawa, H., 2000, Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 A resolution. Nature, 405, 647 -655.
  • Tycko, R., 2000, Solid-state NMR as a probe of amyloid fibril structure. Curr. Opin. Chem. Biol., 4, 500 –506.
  • Untidt, T. S. and Nielsen, N. C., 2002, A closed solution to the Baker- Campbell-Hausforff problem: exact effective Hamiltonian theory for analysis of nuclear magnetic resonance experiments. Phys. Rev. E, 65, 021108-1 –021108-17.
  • Valentine, K. G., Liu, S. F., Marassi, F. M., Veglia, G., Opella, S. J.,
  • Ding, F. X., Wang, S. H., Becker, J. M. and Naider, F., 2001, Structure and topology of a peptide segment of the 6th transmembrane domain of the Saccharomyces cerevisae alpha-factor receptor in phospholipids bilayers. Biopolymer, 59, 243 –256.
  • van Beek, J. D., Hess, S., Vollrath, F. and Meier, B. H., 2002, The molecular structure of spider dragline silk: folding and orientation of the protein backbone. Proc. Natl Acad. Sci. USA, 99, 10266 – 10271.Venter et al ., 2001, The sequence of the humane genome, Science,291, 1304 –1351.
  • Vosegaard, T. and Nielsen, N. C., 2002, Towards high-resolution solid-state NMR on large uniformly 15N- and {13C,15N}-labeled membrane proteins in oriented lipid bilayers. J. Biomol. NMR, 22, 225 –247.
  • Vosegaard, T. and Nielsen, N. C., 2004, Improved pulse sequences for pure exchange solid-state NMR spectroscopy. Magn. Reson. Chem., 42, 285 –290.
  • Vosegaard, T., Malmendal, A. and Nielsen, N. C., 2002, The flexibility of SIMPSON and SIMMOL for numerical simulations in solid- and liquid-state NMR spectroscopy. Chem. Month., 133, 1555 -1574.
  • Wang, J., Balazs, Y. S. and Thompson, L. K., 1997, Solid-state REDOR NMR distance measurements at the ligand site of a bacterial chemotaxis membrane receptor. Biochemistry, 36, 1699 -1703.
  • Wang, J., Denny, J., Tian, C., Kim, S., Mo, Y., Kovacs, F., Song, Z.,
  • Nishimura, K., Gan, Z., Fu, R., Quine, J. R. and Cross, T. A., 2000, Imaging membrane protein helical wheels. J. Magn. Reson., 144, 162 –167.
  • Wang, J., Kim, S., Kovacs, F. and Cross, T. A., 2001, Structure of the transmembrane region of the M2 protein H(+) channel. Prot. Sci., 10, 2241–2250.
  • White, S. H. and Wimley, W. C., 1999, Membrane protein folding and stability: physical principles. Ann. Rev. Biophys. Biomol. Struct., 28, 319 –365.
  • Wu, C. H., Ramamoorthy, A. and Opella, S. J., 1994, High-resolution heteronuclear dipolar solid-state NMR spectroscopy. J. Magn. Reson. A, 109, 270 –272.
  • Wu¨ thrich, K., 1998, The second decade *into the third millennium. Nat. Struct. Biol., 5, 492 -495.
  • Yang, J., Gabrys, C. M. and Weliky, D. P., 2001, Solid-state nuclear magnetic resonance evidence for an extended b strand confor- mation of the membrane bound HIV-1 fusion peptide. Biochem- istry, 40, 8126 -8137.
  • Zeri, A. C., Mesleh, M. F., Nevzorov, A. A. and Opella, S. J., 2003, Structure of the coat protein in fd filamentous bacteriophage particles determined by solid-state NMR spectroscopy. Proc. Natl Acad. Sci. USA, 100, 6458 –6463.Received 16 January 2004; and in revised form 8 March 2004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.