327
Views
20
CrossRef citations to date
0
Altmetric
Original Paper

Polytopic membrane protein folding and assembly in vitro and in vivo (Review)

&
Pages 163-170 | Received 20 Jan 2004, Published online: 09 Jul 2009

References

  • Booth, P. J., Templer, R. H., Meijberg, J. W., Allen, S. J., Lorch, M.and Curran, A.R., 2001, In vitro studies of membrane protein folding. Crit. Rev. Biochem. Mol. Biol, 36, 501 –603.
  • Huang, K.-S., Bayley, H., Liao, M.-J., London, E. and Khorana, H.G., 1981, Refolding of an integral membrane protein. Denaturation, renaturation and reconstitution of intact bacter- iorhodopsin and two proteolytic fragments. J. Biol. Chem., 256, 3802 -3809.
  • London, E.and Khorana, H.G., 1982, Denaturation and renaturation of bacteriorhodopsin in detergents and lipid-deter- gent mixtures. J. Biol. Chem., 257, 7003 -7011.
  • Paulsen, H., Finkenzeller, B. and Ku¨ hlein, N., 1993, Pigments induce folding of light-harvesting chlorophyll a/b-binding protein. Eur. J. Biochem., 215, 809 –817.
  • Booth, P.J. and Paulsen, H., 1996, Assembly of the light harvesting chlorophyll a/b complex in vitro .Time-resolved fluorescence measurements. Biochemistry, 35, 5103 -5108.
  • Sanders, C. R., II and Landis, G. C., 1995, Reconstitution of membrane proteins into lipid-rich bilayered mixed micelles for NMR studies. Biochemistry, 34, 4030 -4040.
  • Gorzelle, B. M., Nagy, J. K., Oxenoid, K., Lonzer, W. L., Cafiso, D.S. and Sanders, C. R., 1999, Reconstitutive refolding of diacylglycerol kinase, an integral membrane protein. Biochem- istry, 38, 16373–16382.
  • Yerushalmi, H., Lebendiker, M. and Schuldiner, S., 1995, EmrE, an Escherichia coli 12-kDa multidrug transporter, exchanges toxic cations and H+ and is soluble in organic solvents. J. Biol. Chem., 270, 6856–6863.
  • Valiyaveetil, F. I., MacKinnon, R. and Muir, T. W., 2002, Semisynthesis and folding of the potassium channel KcsA. J. Am. Chem. Soc., 124, 9113 -9120.
  • Valiyaveetil, F. I., Zhou, Y. and MacKinnon, R., 2002, Lipids in the structure, folding, and function of the KcsA K+ channel. Biochemistry, 41, 10771–10777.
  • Otzen, D., 2003, Folding of DsbB in mixed micelles: a kinetic analysis of the stability of a bacterial membrane protein. J. Mol. Biol., 330, 641 –649.
  • Baneres, J.-L., Martin, A., Hullot, P., Girard, J.-P., Rossi, J.-C. and Parello, J., 2003, Structure-based analysis of GPCR function: conformational adaptation of both agonist and receptor upon leukotriene B4 binding to recombinant BLT1. J. Mol. Biol., 329, 801 –814.
  • Booth, P. J., Flitsch, S. L., Stern, L. J., Greenhalgh, D. A., Kim, P.S.and Khorana, H.G., 1995, Intermediates in the folding of the membrane protein bacteriorhodopsin. Nat. Struct. Biol., 2, 139 –143.
  • Booth, P.J., Farooq, A. and Flitsch, S.L., 1996, Retinal binding during folding and assembly of the membrane protein bacter- iorhodopsin. Biochemistry, 35, 5902 -5909.
  • Lau, F.W. and Bowie, J. U., 1997, A method for assessing the stability of a membrane protein. Biochemistry, 36, 5884 -5892.
  • Bowie, J.U., 2001, Stabilizing membrane proteins. Curr. Opin.Struct. Biol., 11, 397 –402.
  • Fyfe, P. K., McAuley, K. E., Roszak, A. W., Isaacs, N. W., Cogdell, R.J.and Jones, M. R., 2001, Probing the interface between membrane proteins and membrane lipids by X-ray crystallography. Trends Biochem. Sci., 26, 106 –112.
  • Meijberg, W.and Booth, P.J., 2002, The activation energy for insertion of transmembrane alpha-helices is dependent on membrane composition. J. Mol. Biol., 319, 839 –853.
  • White, S.H., 2003, Translocons, thermodynamics, and the folding of membrane proteins. FEBS Lett., 555, 116 –121.
  • Engelman, D. M., Chen, Y., Chin, C. N., Curran, A. R., Dixon, A.M., Dupuy, A. D., Lee, A. S., Lehnert, U., Matthews, E. E., Reshetnyak, Y.K., Senes, A.and Popot, J.L., 2003, Membrane protein folding: beyond the two stage model. FEBS Lett., 555, 122 –125.
  • Popot, J.-L. and Engelman, D. M., 1990, Membrane protein folding and oligomerization: the two stage model. Biochemistry, 29, 4031–4037.
  • Ridge, K., Lee, S. and Yao, L., 1995, In vivo assembly of rhodopsin from expressed polypeptide fragments. Proc. Natl Acad. Sci., 92, 3204 -3208.
  • Lemmon, M.A.and Engelman, D. M., 1994, Specificity and promiscuity in membrane helix interactions. Quart. Rev. Bio- phys., 27, 157 –218.
  • Allen, S. J., Kim, J.-M., Khorana, H. G., Lu, H. and Booth, P. J., 2001, Structure and function in bacteriorhodopsin: the role of the interhelical loops in folding and stability of bacteriorhodop- sin. J. Mol. Biol., 308, 423 –435.
  • Kim, J.-M., Booth, P. J., Allen, S. J. and Khorana, H. G., 2001, Structure and function in bacteriorhodopsin: the role of the interhelical loops in the folding and stability of bacteriorhodop- sin. J. Mol. Biol., 308, 409 –422.
  • MacKenzie, K. R., Prestegard, J. H. and Engelman, D. M., 1997, A transmembrane helix dimer: structure and implications. Science, 276, 131 –133.
  • Senes, A., Gerstein, M. and Engelman, D. M., 2000, Statistical analysis of amino acid patterns in transmembrane helices: the GxxxG motif occurs frequently and in association with b-branched residues at neighbouring positions. J. Mol. Biol. ,296, 921 –936.
  • Russ, W.P. and Engelman, D.M., 2000, The GxxxG motif: a framework for transmembrane helix-helix association. J. Mol. Biol., 296, 911 –919.
  • Karnik, S.S.and Khorana, H. G., 1990, Assembly of functional rhodopsin requires a disulfide bond between cysteine residues 110 and 187. J. Biol. Chem., 265, 17520–17524.
  • Kaushel, S.and Khorana, H.G., 1994, Structure and function in rhodopsin.7.Point mutations associated with autosomal dominant retinitis pigmentosa. Biochemistry, 33, 6121 -6128.
  • Karnik, S. S., Sakmar, T. P., Chen, H. B. and Khorana, H. G., 1998, Cysteine residues 110 and 187 are essential for the formation of correct structure in bovine rhodopsin. Proc. Natl Acad. Sci. USA, 85, 8459 -8463.
  • Hwa, J., Reeves, P., Klein-Seetharaman, J., Davidson, F. and Khorana, H., 1999, Structure and function in rhodopsin: further elucidation of the role of the intra-discal cysteines, Cys-110, - 185 and -187 in rhodopsin folding and function. Proc. Natl Acad. Sci. USA, 96, 1932 –1935.
  • Hwa, J., Garriga, P., Liu, X. and Khorana, H. G., 1997, Structure and function in rhodopsin: packing of the helices in the transmembrane domain and folding to a tertiary structure in the intra-discal domain are coupled. Proc. Natl Acad. Sci. USA, 94, 10571–10576.
  • Stojanovic, A., Hwang, I., Khorana, H. G. and Hwa, J., 2003, Retinitis pigmentosa rhodopsin mutations L125R and A164V perturb critical interhelical interactions: new insights through compensatory mutations and crystal structure analysis. J. Biol. Chem., 278, 39020–39028.
  • Partridge, A.W., Therien, A.G.and Deber, C.M., 2002, Polar mutations in membrane proteins as a biophysical basis for disease. Biopolymers, 66, 350 –358.
  • Curran, A.R.and Engelman, D.M., 2003, Sequence motifs, polar interactions and conformational changes in helical mem- brane proteins. Curr. Opin. Struct. Biol., 13, 412 –417.
  • Therien, A. G., Grant, F. E. and Deber, C. M., 2001, Interhelical hydrogen bonds in the CFTR membrane domain. Nat. Struct. Biol., 8, 597 –601.
  • Laird, V.and High, S., 1997, Discrete cross-linking products identified during membrane protein biosynthesis. J. Biol. Chem., 272, 1983 –1989.
  • Lecomte, F. J., Ismail, N. and High, S., 2003, Making membrane proteins at the mammalian endoplasmic reticulum. Biochem. Soc. Trans., 31, 1248 -1252.
  • van den Berg, B., Clemons, W. M., Jr, Collinson, I., Modis, Y., Hartmann, E., Harrison, S. C. and Rapoport, T. A., 2004, X-ray structure of a protein-conducting channel. Nature, 427, 36 –44.
  • Dobberstein, B.and Sinning, I., 2004, Structural biology.Surprising news from the PCC. Science, 303, 320 –322.
  • Le Gall, S., Neuhof, A. and Rapoport, T., 2004, The endoplas- mic reticulum membrane is permeable to small molecules. Mol. Biol. Cell., 15, 447 –455.
  • Heinrich, S.U.and Rapoport, T.A., 2003, Cooperation of transmembrane segments during the integration of a double- spanning protein into the ER membrane. EMBO J., 22, 3654- 3663.
  • Meacock, S. L., Lecomte, F. J., Crawshaw, S. G. and High, S., 2002, Different transmembrane domains associate with distinct endoplasmic reticulum components during membrane integra- tion of a polytopic protein. Mol. Biol. Cell, 13, 4114 -4129.
  • Mothes, W., Heinrich, S. U., Graf, R., Nilsson, I., von Heijne, G., Brunner, J.and Rapoport, T. A., 1997, Molecular mechanism of membrane protein integration into the endoplasmic reticulum. Cell, 89, 523 –533.
  • Heinrich, S. U., Mothes, W., Brunner, J. and Rapoport, T. A., 2000, The Sec61p complex mediates the integration of a membrane protein by allowing lipid partitioning of the trans- membrane domain. Cell, 102, 233 –244.
  • High, S.and Laird, V., 1997, Membrane protein biosynthesis * all sewn up? Trends Cell Biol., 7, 206 -210.
  • McCormick, P. J., Miao, Y., Shao, Y., Lin, J. and Johnson, A. E., 2003, Cotranslational protein integration into the ER membraneis mediated by the binding of nascent chains to translocon proteins. Mol. Cell, 12, 329 –341.
  • Kopito, R.R., 1999, Biosynthesis and degradation of CFTR. Physiol. Rev, 79, S167–173.
  • Loo, M. A., Jensen, T. J., Cui, L., Hou, Y., Chang, X. B. and Riordan, J.R., 1998, Perturbation of Hsp90 interaction with nascent CFTR prevents its maturation and accelerates its degradation by the proteasome. EMBO J., 17, 6879 -6887.
  • Meacham, G. C., Lu, Z., King, S., Sorscher, E., Tousson, A. and Cyr, D.M., 1999, The Hdj-2/Hsc70 chaperone pair facilitates early steps in CFTR biogenesis. EMBO J., 18, 1492 -1505.
  • Chapple, J.P.and Cheetham, M. E., 2003, The chaperone environment at the cytoplasmic face of the endoplasmic reticulum can modulate rhodopsin processing and inclusion formation. J. Biol. Chem., 278, 19087–19094.
  • Swanton, E., High, S. and Woodman, P., 2003, Role of calnexin in the glycan-independent quality control of proteolipid protein. EMBO J., 22, 2948 -2958.
  • Rutishauser, J.and Spiess, M., 2002, Endoplasmic reticulum storage diseases. Swiss Med. Wkly, 132, 211 –222.
  • Ellgaard, L.and Helenius, A., 2003, Quality control in the endoplasmic reticulum. Nat. Rev. Mol. Cell Biol., 4, 181 –191.
  • Tector, M.and Hartl, F. U., 1999, An unstable transmembrane segment in the cystic fibrosis transmembrane conductance regulator. EMBO J., 18, 6290 -6298.
  • Ellgaard, L., Molinari, M. and Helenius, A., 1999, Setting the standards: quality control in the secretory pathway. Science, 286, 1882 –1888.
  • High, S., Lecomte, F. J., Russell, S. J., Abell, B. M. and Oliver, J.D., 2000, Glycoprotein folding in the endoplasmic reticulum: a tale of three chaperones? FEBS Lett., 476, 38 –41.
  • Schrag, J. D., Procopio, D. O., Cygler, M., Thomas, D. Y. and Bergeron, J.J., 2003, Lectin control of protein folding and sorting in the secretory pathway. Trends Biochem. Sci., 28, 49 – 57.
  • Wang, T.and Hebert, D.N., 2003, EDEM an ER quality control receptor. Nat. Struct. Biol., 10, 319 –321.
  • Landolt-Marticorena, C.and Reithmeier, R. A., 1994, Aspar- agine-linked oligosaccharides are localized to single extracyto- solic segments in multi-span membrane glycoproteins. Biochem. J., 302, 253 –260.
  • Daniels, R., Kurowski, B., Johnson, A. E. and Hebert, D. N., 2003, N-linked glycans direct the cotranslational folding path- way of influenza hemagglutinin. Mol. Cell, 11, 79 –90.
  • Wang, Q.and Chang, A., 2003, Substrate recognition in ER- associated degradation mediated by Eps1, a member of the protein disulfide isomerase family. EMBO J., 22, 3792 -3802.
  • Tsai, B., Ye, Y. and Rapoport, T. A., 2002, Retro-translocation of proteins from the endoplasmic reticulum into the cytosol. Nat. Rev. Mol. Cell Biol., 3, 246 –255.
  • Ye, Y., Meyer, H. H. and Rapoport, T. A., 2001, The AAAATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature, 414, 652 –656.
  • Wiertz, E. J., Tortorella, D., Bogyo, M., Yu, J., Mothes, W., Jones, T.R., Rapoport, T.A.and Ploegh, H.L., 1996, Sec61- mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature, 384, 432 – 438.
  • VanSlyke, J.K.and Musil, L.S., 2002, Dislocation and degradation from the ER are regulated by cytosolic stress. J. Cell. Biol., 157, 381 –394.
  • Romisch, K., 1999, Surfing the Sec61 channel: bidirectionalprotein translocation across the ER membrane. J. Cell. Sci. ,112, 4185–4191.
  • McCracken, A.A. and Brodsky, J.L., 2003, Evolving questions and paradigm shifts in endoplasmic-reticulum-associated de- gradation (ERAD). Bioessays, 25, 868 –877.
  • Haynes, C.M., Caldwell, S.and Cooper, A.A., 2002, An HRD/DER-independent ER quality control mechanism involves Rsp5p-dependent ubiquitination and ER-Golgi transport. J. Cell Biol., 158, 91 –101.
  • Fayadat, L.and Kopito, R.R., 2003, Recognition of a single transmembrane degron by sequential quality control check- points. Mol. Biol. Cell, 14, 1268 –1278.
  • Illing, M. E., Rajan, R.S., Bence, N.F.and Kopito, R.R., 2002, A rhodopsin mutant linked to autosomal dominant retinitis pigmentosa is prone to aggregate and interacts with the ubiquitin proteasome system. J. Biol. Chem., 277, 34150 – 34160.
  • Kopito, R.R.and Sitia, R., 2000, Aggresomes and Russell bodies.Symptoms of cellular indigestion? EMBO Rep., 1, 225 – 231.
  • Wigley, W. C., Corboy, M. J., Cutler, T. D., Thibodeau, P. H.,Oldan, J., Lee, M. G., Rizo, J., Hunt, J. F. and Thomas, P. J., 2002, A protein sequence that can encode native structure by disfavoring alternate conformations. Nat. Struct. Biol., 9, 381 – 388.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.