2,572
Views
67
CrossRef citations to date
0
Altmetric
Original Article

Omptin proteins: an expanding family of outer membrane proteases in Gram-negative Enterobacteriaceae (Review)

&
Pages 395-406 | Received 21 Aug 2006, Published online: 09 Jul 2009

References

  • Vandeputte-Rutten L, Kramer RA, Kroon J, Dekker N, Egmond MR, Gros P. Crystal structure of the outer membrane protease OmpT from Escherichia coli suggests a novel catalytic site. Embo J 2001; 20: 5033–5039
  • Kukkonen M, Lahteenmaki K, Suomalainen M, Kalkkinen N, Emody L, Lang H, Korhonen TK. Protein regions important for plasminogen activation and inactivation of alpha2-antiplasmin in the surface protease Pla of Yersinia pestis. Mol Microbiol 2001; 40: 1097–1111
  • Kukkonen M, Korhonen TK. The omptin family of enterobacterial surface proteases/adhesins: from housekeeping in Escherichia, coli to systemic spread of Yersinia pestis. Int J Med Microbiol 2004; 294: 7–14
  • Stathopoulos C. Structural features, physiological roles, and biotechnological applications of the membrane proteases of the OmpT bacterial endopeptidase family: a micro-review. Membr Cell Biol 1998; 12: 1–8
  • Grodberg J, Dunn JJ. ompT encodes the Escherichia coli outer membrane protease that cleaves T7 RNA polymerase during purification. J Bacteriol 1988; 170: 1245–1253
  • Kaufmann A, Stierhof YD, Henning U. New outer membrane-associated protease of Escherichia coli K-12. J Bacteriol 1994; 176: 359–367
  • Sodeinde OA, Subrahmanyam YV, Stark K, Quan T, Bao Y, Goguen JD. A surface protease and the invasive character of plague. Science 1992; 258: 1004–1007
  • Egile C, d'Hauteville H, Parsot C, Sansonetti PJ. SopA, the outer membrane protease responsible for polar localization of IcsA in Shigella flexneri. Mol Microbiol 1997; 23: 1063–1073
  • Grodberg J, Dunn JJ. Comparison of Escherichia coli K-12 outer membrane protease OmpT and Salmonella typhimurium E protein. J Bacteriol 1989; 171: 2903–2905
  • Brubaker RR, Beesley ED, Surgalla MJ. Pasturella pestis: role of pesticin I and iron in experimental plague. Science 1965; 149: 422–424
  • Sebbane F, Jarrett CO, Gardner D, Long D, Hinnebusch BJ. Role of the Yersinia pestis plasminogen activator in the incidence of distinct septicemic and bubonic forms of flea-borne plague. Proc Natl Acad Sci USA 2006; 103: 5526–5530
  • Lathem WW, Price PA, Miller VL, Goldman WE. A plasminogen-activating protease specifically controls the development of primary pneumonic plague. Science 2007; 315: 509–513
  • Lahteenmaki K, Kukkonen M, Korhonen TK. The Pla surface protease/adhesin of Yersinia pestis mediates bacterial invasion into human endothelial cells. FEBS Lett 2001; 504: 69–72
  • Kramer RA, Zandwijken D, Egmond MR, Dekker N. In vitro folding, purification and characterization of Escherichia coli outer membrane protease ompT. Eur J Biochem 2000; 267: 885–893
  • Kramer RA, Brandenburg K, Vandeputte-Rutten L, Werkhoven M, Gros P, Dekker N, Egmond MR. Lipopolysaccharide regions involved in the activation of Escherichia coli outer membrane protease OmpT. Eur J Biochem 2002; 269: 1746–1752
  • Kukkonen M, Suomalainen M, Kyllonen P, Lahteenmaki K, Lang H, Virkola R, Helander IM, Holst O, Korhonen TK. Lack of O-antigen is essential for plasminogen activation by Yersinia pestis and Salmonella enterica. Mol Microbiol 2004; 51: 215–225
  • Pouillot F, Derbise A, Kukkonen M, Foulon J, Korhonen TK, Carniel E. Evaluation of O-antigen inactivation on Pla activity and virulence of Yersinia pseudotuberculosis harbouring the pPla plasmid. Microbiology 2005; 151: 3759–3768
  • Lahteenmaki K, Kyllonen P, Partanen L, Korhonen TK. Antiprotease inactivation by Salmonella enterica released from infected macrophages. Cell Microbiol 2005; 7: 529–538
  • Ferguson AD, Welte W, Hofmann E, Lindner B, Holst O, Coulton JW, Diederichs K. A conserved structural motif for lipopolysaccharide recognition by procaryotic and eucaryotic proteins. Structure Fold Des 2000; 8: 585–592
  • Kramer RA, Dekker N, Egmond MR. Identification of active site serine and histidine residues in Escherichia coli outer membrane protease OmpT. FEBS Lett 2000; 468: 220–224
  • Sugimura K, Nishihara T. Purification, characterization, and primary structure of Escherichia coli protease VII with specificity for paired basic residues: identity of protease VII and OmpT. J Bacteriol 1988; 170: 5625–5632
  • Vandeputte-Rutten L, Gros P. Novel proteases: common themes and surprising features. Curr Opin Struct Biol 2002; 12: 704–708
  • Varadarajan N, Gam J, Olsen MJ, Georgiou G, Iverson BL. Engineering of protease variants exhibiting high catalytic activity and exquisite substrate selectivity. Proc Natl Acad Sci USA 2005; 102: 6855–6860
  • Dekker N, Cox RC, Kramer RA, Egmond MR. Substrate specificity of the integral membrane protease OmpT determined by spatially addressed peptide libraries. Biochemistry 2001; 40: 1694–1701
  • Okuno K, Yabuta M, Ohsuye K, Ooi T, Kinoshita S. An analysis of target preferences of Escherichia coli outer-membrane endoprotease OmpT for use in therapeutic peptide production: efficient cleavage of substrates with basic amino acids at the P4 and P6 positions. Biotechnol Appl Biochem 2002; 36: 77–84
  • Stumpe S, Schmid R, Stephens DL, Georgiou G, Bakker EP. Identification of OmpT as the protease that hydrolyzes the antimicrobial peptide protamine before it enters growing cells of Escherichia coli. J Bacteriol 1998; 180: 4002–4006
  • Schechter I, Berger A. On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun 1967; 27: 157–162
  • McCarter JD, Stephens D, Shoemaker K, Rosenberg S, Kirsch JF, Georgiou G. Substrate specificity of the Escherichia coli outer membrane protease OmpT. J Bacteriol 2004; 186: 5919–5925
  • Lahteenmaki K, Kukkonen M, Jaatinen S, Suomalainen M, Soranummi H, Virkola R, Lang H, Korhonen TK. Yersinia pestis Pla has multiple virulence-associated functions. Adv Exp Med Biol 2003; 529: 141–145
  • Kienle Z, Emody L, Svanborg C, O'Toole PW. Adhesive properties conferred by the plasminogen activator of Yersinia pestis. J Gen Microbiol 1992; 138 (Pt 8): 1679–1687
  • Lahteenmaki K, Virkola R, Saren A, Emody L, Korhonen TK. Expression of plasminogen activator pla of Yersinia pestis enhances bacterial attachment to the mammalian extracellular matrix. Infect Immun 1998; 66: 5755–5762
  • Hritonenko V. Bacterial outer membrane proteins and infectious diseases: computational and biochemical analyses. Int J Ecol Div 2007; 6: 78–86
  • Cowan C, Jones HA, Kaya YH, Perry RD, Straley SC. Invasion of epithelial cells by Yersinia pestis: evidence for a Y. pestis-specific invasin. Infect Immun 2000; 68: 4523–4530
  • Benedek O, Nagy G, Emody L. Intracellular signalling and cytoskeletal rearrangement involved in Yersinia pestis plasminogen activator (Pla) mediated HeLa cell invasion. Microb Pathog 2004; 37: 47–54
  • Beesley ED, Brubaker RR, Janssen WA, Surgalla MJ. Pesticins. 3. Expression of coagulase and mechanism of fibrinolysis. J Bacteriol 1967; 94: 19–26
  • Sodeinde OA, Goguen JD. Genetic analysis of the 9.5-kilobase virulence plasmid of Yersinia pestis. Infect Immun 1988; 56: 2743–2748
  • Marrs CF, Zhang L, Tallman P, Manning SD, Somsel P, Raz P, Colodner R, Jantunen ME, Siitonen A, Saxen H, Foxman B. Variations in 10 putative uropathogen virulence genes among urinary, faecal and peri-urethral Escherichia coli. J Med Microbiol 2002; 51: 138–142
  • Lundrigan MD, Webb RM. Prevalence of ompT among Escherichia coli isolates of human origin. FEMS Microbiol Lett 1992; 76: 51–56
  • Johnson JR, Oswald E, O'Bryan TT, Kuskowski MA, Spanjaard L. Phylogenetic distribution of virulence-associated genes among Escherichia coli isolates associated with neonatal bacterial meningitis in the Netherlands. J Infect Dis 2002; 185: 774–784
  • Aspedon A, Groisman EA. The antibacterial action of protamine: evidence for disruption of cytoplasmic membrane energization in Salmonella typhimurium. Microbiology 1996; 142 (Pt 12): 3389–3397
  • Johansen C, Verheul A, Gram L, Gill T, Abee T. Protamine-induced permeabilization of cell envelopes of gram-positive and gram-negative bacteria. Appl Environ Microbiol 1997; 63: 1155–1159
  • Jacob-Dubuisson F, Fernandez R, Coutte L. Protein secretion through autotransporter and two-partner pathways. Biochim Biophys Acta 2004; 1694: 235–257
  • Ruiz-Olvera P, Ruiz-Perez F, Sepulveda NV, Santiago-Machuca A, Maldonado-Rodriguez R, Garcia-Elorriaga G, Gonzalez-Bonilla C. Display and release of the Plasmodium falciparum circumsporozoite protein using the autotransporter MisL of Salmonella enterica. Plasmid 2003; 50: 12–27
  • Nakata N, Tobe T, Fukuda I, Suzuki T, Komatsu K, Yoshikawa M, Sasakawa C. The absence of a surface protease, OmpT, determines the intercellular spreading ability of Shigella: the relationship between the ompT and kcpA loci. Mol Microbiol 1993; 9: 459–468
  • Yen YT, Karkal A, Bhattacharya M, Fernandez R, Stathopoulos C. Identification and characterization of autotransporter proteins of Yersinia pestis KIM. Mol Membr Biol 2007; 24: 28–40
  • Mangel WF, Toledo DL, Brown MT, Worzalla K, Lee M, Dunn JJ. Omptin: an Escherichia coli outer membrane proteinase that activates plasminogen. Methods Enzymol 1994; 244: 384–399
  • Brandenburg K, Garidel P, Schromm AB, Andra J, Kramer A, Egmond M, Wiese A. Investigation into the interaction of the bacterial protease OmpT with outer membrane lipids and biological activity of OmpT:lipopolysaccharide complexes. Eur Biophys J. 2005; 34: 28–41
  • Sebbane F, Lemaitre N, Sturdevant DE, Rebeil R, Virtaneva K, Porcella SF, Hinnebusch BJ. Adaptive response of Yersinia pestis to extracellular effectors of innate immunity during bubonic plague. Proc Natl Acad Sci USA 2006; 103: 11766–11771
  • Morona R, Daniels C, Van Den Bosch L. Genetic modulation of Shigella flexneri 2a lipopolysaccharide O antigen modal chain length reveals that it has been optimized for virulence. Microbiology 2003; 149: 925–939
  • Cossart P, Sansonetti PJ. Bacterial invasion: the paradigms of enteroinvasive pathogens. Science 2004; 304: 242–248
  • Wing HJ, Yan AW, Goldman SR, Goldberg MB. Regulation of IcsP, the outer membrane protease of the Shigella actin tail assembly protein IcsA, by virulence plasmid regulators VirF and VirB. J Bacteriol 2004; 186: 699–705
  • Monack DM, Theriot JA. Actin-based motility is sufficient for bacterial membrane protrusion formation and host cell uptake. Cell Microbiol 2001; 3: 633–647
  • Guina T, Yi EC, Wang H, Hackett M, Miller SI. A PhoP-regulated outer membrane protease of Salmonella enterica serovar typhimurium promotes resistance to alpha-helical antimicrobial peptides. J Bacteriol 2000; 182: 4077–4086
  • Navarre WW, Halsey TA, Walthers D, Frye J, McClelland M, Potter JL, Kenney LJ, Gunn JS, Fang FC, Libby SJ. Co-regulation of Salmonella enterica genes required for virulence and resistance to antimicrobial peptides by SlyA and PhoP/PhoQ. Mol Microbiol 2005; 56: 492–508
  • Eriksson S, Lucchini S, Thompson A, Rhen M, Hinton JC. Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica. Mol Microbiol 2003; 47: 103–118
  • Rawlings ND, Morton FR, Barrett AJ. MEROPS: the peptidase database. Nucleic Acids Res 2006; 34: D270–272
  • Achtman M, Zurth K, Morelli G, Torrea G, Guiyoule A, Carniel E. Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc Natl Acad Sci USA 1999; 96: 14043–14048
  • Styer KL, Hopkins GW, Bartra SS, Plano GV, Frothingham R, Aballay A. Yersinia pestis kills Caenorhabditis elegans by a biofilm-independent process that involves novel virulence factors. EMBO Rep 2005; 6: 992–997
  • Bendtsen JD, Nielsen H, von Heijne G, Brunak S. Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 2004; 340: 783–795
  • Escobar-Paramo P, Giudicelli C, Parsot C, Denamur E. The evolutionary history of Shigella and enteroinvasive Escherichia coli revised. J Mol Evol 2003; 57: 140–148
  • Sedliakova M. A non-excision uvr-dependent DNA repair pathway of Escherichia coli (involvement of stress proteins). J Photochem Photobiol B 1998; 45: 75–81
  • Cavard D, Lazdunski C. Colicin cleavage by OmpT protease during both entry into and release from Escherichia coli cells. J Bacteriol 1990; 172: 648–652
  • White CB, Chen Q, Kenyon GL, Babbitt PC. A novel activity of OmpT. Proteolysis under extreme denaturing conditions. J Biol Chem 1995; 270: 12990–12994
  • Rabus R, Ruepp A, Frickey T, Rattei T, Fartmann B, Stark M, Bauer M, Zibat A, Lombardot T, Becker I, Amann J, Gellner K, Teeling H, Leuschner WD, Glockner FO, Lupas AN, Amann R, Klenk HP. The genome of Desulfotalea psychrophila, a sulfate-reducing bacterium from permanently cold Arctic sediments. Environ Microbiol 2004; 6: 887–902
  • Nielsen H, Krogh A. Prediction of signal peptides and signal anchors by a hidden Markov model. Proc Int Conf Intell Syst Mol Biol 1998; 6: 122–130
  • MMWR. 1999. Mortality Patterns – United States, 1997. pp. 664–668. Atlanta, GA: Centers for Disease Control and Prevention.
  • Okuno K, Yabuta M, Kawanishi K, Ohsuye K, Ooi T, Kinoshita S. Substrate specificity at the P1′ site of Escherichia coli OmpT under denaturing conditions. Biosci Biotechnol Biochem 2002; 66: 127–134
  • Kumar S, Tamura K, Nei M. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 2004; 5: 150–163

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.