576
Views
19
CrossRef citations to date
0
Altmetric
Papers

Membrane adsorption, folding, insertion and translocation of synthetic trans-membrane peptides

&
Pages 245-257 | Received 23 Oct 2007, Published online: 09 Jul 2009

References

  • de Groot BL, Grubmuller H. Water permeation across biological membranes: Mechanism and dynamics of aquaporin-1 and GlpF. Science 2001; 294: 2353–2357
  • Forrest LR, Sansom MSP. Membrane simulations: Bigger and better?. Curr Opin Structural Biol 2000; 10: 174–181
  • Biggin PC, Sansom MS. Interactions of alpha-helices with lipid bilayers: a review of simulation studies. Biophys Chem 1999; 76: 161–183
  • Domene C, Bond P, Sansom MSP. Membrane protein simulation: Ion channels and bacterial outer membrane proteins. Adv Prot Chem 2003; 66: 159–193
  • Woolf TB, Zuckerman DM, Lu ND, Jang HB. Tools for channels: Moving towards molecular calculations of gating and permeation in ion channel biophysics. J Molec Graphics Modelling 2004; 22: 359–368
  • Efremov RG, Nolde DE, Konshina AG, Syrtcev NP, Arseniev AS. Peptides and proteins in membranes: What can we learn via computer simulations?. Curr Medicinal Chem 2004; 11: 2421–2442
  • Still WC, Tempczyk A, Hawley RC, Hendrickson T. Semianalytical treatment of solvation for molecular mechanics and dynamics. J Am Chem Soc 1990; 112: 6127–6129
  • Tanizaki S, Feig M. A generalized Born formalism for heterogeneous dielectric environments: Application to the implicit modeling of biological membranes. J Chem Phys 2005; 122: 124706
  • Spassov VZ, Yan L, Szalma S. Introducing an implicit membrane in generalized Born/solvent accessibility continuum solvent models. J Phys Chem B 2002; 106: 8726–8738
  • Im W, Feig M, Brooks III CL. An implicit membrane generalized born theory for the study of structure, stability, and interactions of membrane proteins. Biophys J 2003; 85: 2900–2918
  • Ulmschneider MB, Ulmschneider JP, Sansom MSP, Di Nola A. A generalized Born implicit membrane representation compared to experimental insertion free energies. Biophys J 2007; 92: 2338–2349
  • Chowdhury S, Zhang W, Wu C, Xiong GM, Duan Y. Breaking non-native hydrophobic clusters is the rate-limiting step in the folding of an alanine-based peptide. Biopolymers 2003; 68: 63–75
  • Jang S, Shin S, Pak Y. Molecular dynamics study of peptides in implicit water: Ab initio folding of beta-hairpin,beta-sheet, and beta beta alpha- motif. J Am Chem Soc 2002; 124: 4976–4977
  • Simmerling C, Strockbine B, Roitberg AE. All-atom structure prediction and folding simulations of a stable protein. J Am Chem Soc 2002; 124: 11258–11259
  • Snow CD, Nguyen N, Pande VS, Gruebele M. Absolute comparison of simulated and experimental protein-folding dynamics. Nature 2002; 420: 102–106
  • Ulmschneider JP, Ulmschneider MB. Folding simulations of the trans-membrane helix of virus protein U in an implicit membrane model. J Chem Theory Computation 2007; 3: 2335–2346
  • Ulmschneider JP, Ulmschneider MB, Di Nola A. Monte Carlo folding of trans-membrane helical peptides in an implicit generalized Born membrane. Proteins: Structure Function and Bioinformatics 2007; 69: 297–308
  • Im W, Brooks CL., III. De novo folding of membrane proteins: An exploration of the structure and NMR properties of the fd coat protein. J Molec Biol 2004; 337: 513–519
  • Ulmschneider JP, Jorgensen WL. Monte Carlo backbone sampling for polypeptides with variable bond angles and dihedral angles using concerted rotations and a Gaussian bias. J Chem Phys 2003; 118: 4261–4271
  • Ulmschneider JP, Jorgensen WL. Polypeptide folding using Monte Carlo sampling, concerted rotation, and continuum solvation. J Am Chem Soc 2004; 126: 1849–1857
  • Ulmschneider JP, Ulmschneider MB, Di Nola A. Monte Carlo vs. Molecular Dynamics for all-atom polypeptide folding simulations. J Phys Chem B 2006; 110: 16733–16742
  • Killian JA. Synthetic peptides as models for intrinsic membrane proteins. FEBS Lett 2003; 555: 134–138
  • de Planque MRR, Killian JA. Protein-lipid interactions studied with designed transmembrane peptides: Role of hydrophobic matching and interfacial anchoring (Review). Molec Membrane Biol 2003; 20: 271–284
  • Nymeyer H, Woolf TB, Garcia AE. Folding is not required for bilayer insertion: Replica exchange simulations of an alpha-helical peptide with an explicit lipid bilayer. Proteins-Structure Function and Bioinformatics 2005; 59: 783–790
  • Im W, Brooks CL. Interfacial folding and membrane insertion of designed peptides studied by molecular dynamics simulations. Proc Nat Acad Sci USA 2005; 102: 6771–6776
  • Petrache HI, Zuckerman DM, Sachs JN, Killian JA, Koeppe RE, Woolf TB. Hydrophobic matching mechanism investigated by molecular dynamics simulations. Langmuir 2002; 18: 1340–1351
  • Qiu D, Shenkin PS, Hollinger FP, Still WC. The GB/SA continuum model for solvation. A fast analytical method for the calculation of approximate Born radii. J Phys Chem A 1997; 101: 3005–3014
  • Jorgensen WL, Ulmschneider JP, Tirado-Rives J. Free energies of hydration from a generalized Born model and an ALL-atom force field. J Phys Chem B 2004; 108: 16264–16270
  • Parsegian A. Energy of an ion crossing a low dielectric membrane: Solutions to four relevant electrostatic problems. Nature 1969; 221: 844–846
  • Radzicka A, Wolfenden R. Comparing the polarities of the amino-acids – side-chain distribution coefficients between the vapor-phase, cyclohexane, 1-octanol, and neutral aqueous-solution. Biochemistry 1988; 27: 1664–1670
  • Jorgensen WL, Maxwell DS, Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 1996; 118: 11225–11236
  • Ulmschneider JP, Jorgensen WL. Monte Carlo backbone sampling for nucleic acids using concerted rotations including variable bond angles. J Phys Chem B 2004; 108: 16883–16892
  • Earl DJ, Deem MW. Parallel tempering: Theory, applications, and new perspectives. Phys Chem Chem Phys 2005; 7: 3910–3916
  • Engelman DM, Chen Y, Chin CN, Curran AR, Dixon AM, Dupuy AD, Lee AS, Lehnert U, Matthews EE, Reshetnyak YK and others. 2003. Membrane protein folding: Beyond the two stage model. FEBS Letters 555:122–125.
  • Popot JL, Engelman DM. Membrane-protein folding and oligomerization – the 2-stage model. Biochemistry 1990; 29: 4031–4037
  • Jacobs RE, White SH. The nature of the hydrophobic binding of small peptides at the bilayer interface: Implications for the insertion of transbilayer helices. Biochemistry 1989; 28: 3421–3437
  • White SH, Wimley WC. Membrane protein folding and stability: Physical principles. Ann Rev Biophysics Biomolec Structure 1999; 28: 319–365
  • BenTal N, Sitkoff D, Topol IA, Yang AS, Burt SK, Honig B. Free energy of amide hydrogen bond formation in vacuum, in water, and in liquid alkane solution. J Phys Chem B 1997; 101: 450–457
  • Roseman MA. Hydrophobicity of the peptide C = O … H-N hydrogen-bonded group. J Mol Biol 1988; 201: 621–623
  • Wimley WC, Creamer TP, White SH. Solvation energies of amino acid side chains and backbone in a family of host-guest pentapeptides. Biochemistry 1996; 35: 5109–5124
  • MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S and others. 1998. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616.
  • Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M. Charmm – a program for macromolecular energy, minimization, and dynamics calculations. J Computational Chem 1983; 4: 187–217
  • Bond PJ, Holyoake J, Ivetac A, Khalid S, Sansom MSP. Coarse-grained molecular dynamics simulations of membrane proteins and peptides. J Structural Biol 2007; 157: 593–605
  • de Planque MRR, Goormaghtigh E, Greathouse DV, Koeppe RE, Kruijtzer JAW, Liskamp RMJ, de Kruijff B, Killian JA. Sensitivity of single membrane-spanning alpha-helical peptides to hydrophobic mismatch with a lipid bilayer: Effects on backbone structure, orientation, and extent of membrane incorporation. Biochemistry 2001; 40: 5000–5010
  • van der Wel PCA, Strandberg E, Killian JA, Koeppe RE. Geometry and intrinsic tilt of a tryptophan-anchored transmembrane alpha-helix determined by H-2 NMR. Biophysical J 2002; 83: 1479–1488
  • Weiss TM, van der Wel PCA, Killian JA, Koeppe RE, Huang HW. Hydrophobic mismatch between helices and lipid bilayers. Biophysical J 2003; 84: 379–385
  • de Planque MRR, Greathouse DV, Koeppe RE, Schafer H, Marsh D, Killian JA. Influence of lipid/peptide hydrophobic mismatch on the thickness of diacylphosphatidylcholine bilayers. A H-2 NMR and ESR study using designed transmembrane alpha-helical peptides and gramicidin A. Biochemistry 1998; 37: 9333–9345
  • Sengupta D, Meinhold L, Langosch D, Ullmann GM, Smith JC. Understanding the energetics of helical peptide orientation in membranes. Proteins-Structure Funct Genetics 2005; 58: 913–922
  • de Planque MR, Bonev BB, Demmers JA, Greathouse DV, Koeppe RE, 2nd, Separovic F, Watts A, Killian JA. Interfacial anchor properties of tryptophan residues in transmembrane peptides can dominate over hydrophobic matching effects in peptide-lipid interactions. Biochemistry 2003; 42: 5341–5348
  • Im W, Chen J, Brooks CL, 3rd. Peptide and protein folding and conformational equilibria: theoretical treatment of electrostatics and hydrogen bonding with implicit solvent models. Adv Protein Chem 2005; 72: 173–198
  • Hessa T, Kim H, Bihlmaier K, Lundin C, Boekel J, Andersson H, Nilsson I, White SH, von Heijne G. Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature 2005; 433: 377–381

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.