1,593
Views
62
CrossRef citations to date
0
Altmetric
Reviews

Shuttles and cycles: transport of proteins into the peroxisome matrix (Review)

&
Pages 363-375 | Received 08 Feb 2008, Published online: 09 Jul 2009

References

  • Cavalier-Smith T. The simultaneous symbiotic origin of mitochondria, chloroplasts and microbodies. Ann NY Acad Sci 1987; 503: 55–71
  • Wanders RJA. Metabolic and molecular basis of peroxisomal disorders: A review. Am J Med Genetics Part A 2004; 126A: 355–375
  • Baker A, Sparkes IA. Peroxisome protein import: some answers, more questions. Curr Opin Plant Biol 2005; 8: 640–647
  • Hayashi M, Nishimura M. Arabidopsis thaliana – a model organism to study plant peroxisomes. Biochimica et Biophysica Acta-Molec Cell Res 2006; 1763: 1382–1391
  • Veenhuis M. Peroxisome biogenesis and function in Hansenula polymorpha. Cell Biochem Funct 1992; 10: 175–184
  • Debellis L, Tsugeki R, Nishimura M. Glyoxylate cycle enzymes in peroxisomes isolated from petals of pumpkin (Cucurbita Sp.) during senescence. Plant Cell Physiol 1991; 32: 1227–1235
  • Debellis L, Nishimura M. Development of enzymes of the glyoxylate cycle during senescence of pumpkin cotyledons. Plant Cell Physiol 1991; 32: 555–561
  • Titus DE, Becker WM. Investigation of the glyoxysome peroxisome transition in germinating cucumber cotyledons using double-label immunoelectron microscopy. J Cell Biol 1985; 101: 1288–1299
  • Nishimura M, Yamaguchi J, Mori H, Akazawa T, Yokota S. Analytical studies on microbody transition. 5. Immunocytochemical analysis shows that glyoxysomes are directly transformed to leaf peroxisomes during greening of pumpkin cotyledons. Plant Physiol 1986; 81: 313–316
  • Nishimura M, Takeuchi Y, Debellis L, Haranishimura I. Leaf peroxisomes are directly transformed to glyoxysomes during senescence of pumpkin cotyledons. Protoplasma 1993; 175: 131–137
  • Erdmann R, Wiebel FF, Flessau A, Rytka J, Beyer A, Frohlich KU, Kunau WH. Pas1, a yeast gene required for peroxisome biogenesis, encodes a member of a novel family of putative ATPases. Cell 1991; 64: 499–510
  • Lazarow PB. Genetic approaches to studying peroxisome biogenesis. Trends Cell Biol 1993; 3: 89–93
  • Nuttley WM, Brade AM, Gaillardin C, Eitzen GA, Glover JR, Aitchison JD, Rachubinski RA. Rapid identification and characterization of peroxisomal assembly mutants in Yarrowia lipolytica. Yeast 1993; 9: 507–517
  • Fujiki Y. Peroxisome biogenesis and peroxisome biogenesis disorders. FEBS Lett 2000; 476: 42–46
  • Zolman BK, Yoder A, Bartel B. Genetic analysis of indole-3-butyric acid responses in Arabidopsis thaliana reveals four mutant classes. Genetics 2000; 156: 1323–1337
  • Hayashi M, Toriyama K, Kondo M, Nishimura M. 2,4-dichlorophenoxybutyric acid-resistant mutants of Arabidopsis have defects in glyoxysomal fatty acid beta-oxidation. Plant Cell 1998; 10: 183–195
  • Emanuelsson O, Elofsson A, von Heijne G, Cristobal S. In silico prediction of the peroxisomal proteome in fungi, plants and animals. J Mol Biol 2003; 330: 443–456
  • Neuberger G, Maurer-Stroh S, Eisenhaber B, Hartig A, Eisenhaber F. Motif refinement of the peroxisomal targeting signal 1 and evaluation of taxon-specific differences. J Mol Biol 2003; 328: 567–579
  • Reumann S, Ma CL, Lemke S, Babujee L. AraPerox. A database of putative Arabidopsis proteins from plant peroxisomes. Plant Physiol 2004; 136: 2587–2608
  • Kiel J, Veenhuis M, van der Klei IJ. PEX genes in fungal genomes: common, rare or redundant. Traffic 2006; 7: 1291–1303
  • Fujiki Y, Matsuzono Y, Matsuzaki T, Fransen M. Import of peroxisomal membrane proteins: The interplay of Pex3p- and Pex19p-mediated interactions. Biochimica et Biophysica Acta-Molec Cell Res 2006; 1763: 1639–1646
  • Van Ael E, Fransen M. Targeting signals in peroxisomal membrane proteins. Biochimica et Biophysica Acta-Molecular Cell Research 2006; 1763: 1629–1638
  • Fagarasanu A, Fagarasanu M, Rachubinski RA. Maintaining peroxisome populations: a story of division and inheritance. Annu Rev Cell Dev Biol 2007; 23: 321–344
  • Lazarow PB, Fujiki Y. Biogenesis of peroxisomes. Annu Rev Cell Biol 1985; 1: 489–530
  • Lametschwandtner G, Brocard C, Fransen M, Van Veldhoven P, Berger J, Hartig A. The difference in recognition of terminal tripeptides as peroxisomal targeting signal 1 between yeast and human is due to different affinities of their receptor Pex5p to the cognate signal and to residues adjacent to it. J Biol Chem 1998; 273: 33635–33643
  • Gatto GJ, Geisbrecht BV, Gould SJ, Berg JM. Peroxisomal targeting signal-1 recognition by the TPR domains of human PEX5. Nat Struct Biol 2000; 7: 1091–1095
  • Stanley WA, Filipp FV, Kursula P, Schuller N, Erdmann R, Schliebs W, Sattler M, Wilmanns M. Recognition of a functional peroxisome type 1 target by the dynamic import receptor Pex5p. Mol Cell 2006; 24: 653–663
  • Klein ATJ, Barnett P, Bottger G, Konings D, Tabak HF, Distel B. Recognition of peroxisomal targeting signal type 1 by the import receptor Pex5p. J Biol Chem 2001; 276: 15034–15041
  • Otera H, Setoguchi K, Hamasaki M, Kumashiro T, Shimizu N, Fujiki Y. Peroxisomal targeting signal receptor Pex5p interacts with cargoes and import machinery components in a spatiotemporally differentiated manner: Conserved Pex5p WXXYF/Y motifs are critical for matrix protein import. Mol Cell Biol 2002; 22: 1639–1655
  • Saidowsky J, Dodt G, Kirchberg K, Wegner A, Nastainczyk W, Kunau WH, Schliebs W. The di-aromatic pentapeptide repeats of the human peroxisome import receptor PEX5 are separate high affinity binding sites for the peroxisomal membrane protein PEX14. J Biol Chem 2001; 276: 34524–34529
  • Carvalho AF, Grou CP, Pinto MP, Alencastre IS, Costa-Rodrigues J, Fransen M, Sa-Miranda C, Azevedo JE. Functional characterization of two missense mutations in Pex5p-C11S and N526K. Biochimica et Biophysica Acta-Molec Cell Res 2007; 1773: 1141–1148
  • Schliebs W, Saidowsky J, Agianian B, Dodt G, Herberg FW, Kunau WH. Recombinant human peroxisomal targeting signal receptor PEX5 – structural basis for interaction of PEX5 with PEX14. J Biol Chem 1999; 274: 5666–5673
  • Moscicka KB, Klompmaker SH, Wang DY, van der Klei IJ, Boekema EJ. The Hansenula polymorpha peroxisomal targeting signal 1 receptor, Pex5p, functions as a tetramer. FEBS Lett 2007; 581: 1758–1762
  • Costa-Rodrigues J, Carvalho AF, Fransen M, Hambruch E, Schliebs W, Sa-Miranda C, Azevedo JE. Pex5p, the peroxisomal cycling receptor, is a monomeric non-globular protein. J Biol Chem 2005; 280: 24404–24411
  • Lazarow PB. The import receptor Pex7p and the PTS2 targeting sequence. Biochimica et Biophysica Acta-Molec Cell Res 2006; 1763: 1599–1604
  • Motley AM, Hettema EH, Ketting R, Plasterk R, Tabak HF. Caenorhabditis elegans has a single pathway to target matrix proteins to peroxisomes. EMBO Rep 2000; 1: 40–46
  • Zhang JW, Lazarow PB. Peb1 (Pas7) in Saccharomyces cerevisiae encodes a hydrophilic, intra-peroxisomal protein that is a member of the WD repeat family and is essential for the import of thiolase into peroxisomes. J Cell Biol 1995; 129: 65–80
  • Marzioch M, Erdmann R, Veenhuis M, Kunau WH. Pas7 encodes a novel yeast member of the WD-40 protein family essential for import of 3-Oxoacyl-CoA thiolase, a PTS2-containing protein, into peroxisomes. EMBO J 1994; 13: 4908–4918
  • Nair DM, Purdue PE, Lazarow PB. Pex7p translocates in and out of peroxisomes in Saccharomyces cerevisiae. J Cell Biol 2004; 167: 599–604
  • Stein K, Schell-Steven A, Erdmann R, Rottensteiner H. Interactions of Pex7p and Pex18p/Pex21p with the peroxisomal docking machinery: implications for the first steps in PTS2 protein import. Mol Cell Biol 2002; 22: 6056–6069
  • Purdue PE, Yang XD, Lazarow PB. Pex18p and Pex21p, a novel pair of related peroxins essential for peroxisomal targeting by the PTS2 pathway. J Cell Biol 1998; 143: 1859–1869
  • Einwachter H, Sowinski S, Kunau WH, Schliebs W. Yarrowia lipolytica Pex20p, Saccharomyces cerevisiae Pex18p/Pex21p and mammalian Pex5pL fulfil a common function in the early steps of the peroxisomal PTS2 import pathway. EMBO Rep 2001; 2: 1035–1039
  • Leon S, Zhang L, McDonald WH, Yates J, Cregg JM, Subramani S. Dynamics of the peroxisomal import cycle of PpPex20p: ubiquitin-dependent localization and regulation. J Cell Biol 2006; 172: 67–78
  • Sichting M, Schell-Steven A, Prokisch H, Erdmann R, Rottensteiner H. Pex7p and Pex20p of Neurospora crassa function together in PTS2-dependent protein import into peroxisomes. Mol Biol Cell 2003; 14: 810–821
  • Otzen M, Wang DY, Lunenborg MGJ, van der Kiel IJ. Hansenula polymorpha Pex20p is an oligomer that binds the peroxisomal targeting signal 2 (PTS2). J Cell Sci 2005; 118: 3409–3418
  • Otera H, Harano T, Honsho M, Ghaedi K, Mukai S, Tanaka A, Kawai A, Shimizu N, Fujiki Y. The mammalian peroxin Pex5pL, the longer isoform of the mobile peroxisome targeting signal (PTS) type 1 transporter, translocates the Pex7p-PTS2 protein complex into peroxisomes via its initial docking site, Pex14p. J Biol Chem 2000; 275: 21703–21714
  • Matsumura T, Otera H, Fujiki Y. Disruption of the interaction of the longer isoform of Pex5p, Pex5pL, with Pex7p abolishes peroxisome targeting signal type 2 – study with a novel PEX5-impaired Chinese hamster ovary cell mutant. J Biol Chem 2000; 275: 21715–21721
  • Nito K, Hayashi M, Nishimura M. Direct interaction and determination of binding domains among peroxisomal import factors in Arabidopsis thaliana. Plant Cell Physiol 2002; 43: 355–366
  • Woodward AW, Bartel B. The Arabidopsis peroxisomal targeting signal type 2 receptor PEX7 is necessary for peroxisome function and dependent on PEX5. Mol Biol Cell 2005; 16: 573–583
  • Hayashi M, Yagi M, Nito K, Kamada T, Nishimura M. Differential contribution of two peroxisomal protein receptors to the maintenance of peroxisomal functions in Arabidopsis. J Biol Chem 2005; 280: 14829–14835
  • Dodt G, Warren D, Becker E, Rehling P, Gould SJ. Domain mapping of human PEX5 reveals functional and structural similarities to Saccharomyces cerevisiae Pex18p and Pex21p. J Biol Chem 2001; 276: 41769–41781
  • Klein ATJ, van den Berg M, Bottger G, Tabak H, Distel B. Saccharomyces cerevisiae acyl-CoA oxidase follows a novel, non-PTS1, import pathway into peroxisomes that is dependent on Pex5p. J Biol Chem 2002; 277: 25011–25019
  • McNew JA, Goodman HM. An oligomeric protein is imported into peroxisomes in vivo. J Cell Biol 1994; 127: 1245–1257
  • Glover JR, Andrews DW, Rachubinski RA. Saccharomyces cerevisiae peroxisomal thiolase is imported as a dimer. Proc Natl Acad Sci USA 1994; 91: 10541–10545
  • Agne B, Meindl NM, Niederhoff K, Einwachter H, Rehling P, Sickmann A, Meyer HE, Girzalsky W, Kunau WH. Pex8p: An intraperioxisomal organizer of the peroxisomal import machinery. Mol Cell 2003; 11: 635–646
  • Mano S, Nakamori C, Nito K, Kondo M, Nishimura M. The Arabidopsis pex12 and pex13 mutants are defective in both PTS1- and PTS2-dependent protein transport to peroxisomes. Plant J 2006; 47: 604–618
  • Pires JR, Hong XJ, Brockmann C, Volkmer-Engert R, Schneider-Mergener J, Oschkinat H, Erdmann R. The ScPex13p SH3 domain exposes two distinct binding sites for Pex5p and Pex14p. J Mol Biol 2003; 326: 1427–1435
  • Urquhart AJ, Kennedy D, Gould SJ, Crane DI. Interaction of Pex5p, the type 1 peroxisome targeting signal receptor, with the peroxisomal membrane proteins Pex14p and Pex13p. J Biol Chem 2000; 275: 4127–4136
  • Hayashi M, Nito K, Toriyama-Kato K, Kondo M, Yamaya T, Nishimura M. AtPex14p maintains peroxisomal functions by determining protein targeting to three kinds of plant peroxisomes. EMBO J 2000; 19: 5701–5710
  • Kunau WH. Peroxisomes: the extended shuttle to the peroxisome matrix. Curr Biol 2001; 11: R659–R662
  • Rachubinski RA, Subramani S. How proteins penetrate peroxisomes. Cell 1995; 83: 525–528
  • Smith MD, Schnell DJ. Peroxisomal protein import: the paradigm shifts. Cell 2001; 105: 293–296
  • Gouveia AM, Guimaraes CP, Oliveira ME, Reguenga C, Sa-Miranda C, Azevedo JE. in Peroxisomal Disorders and Regulation of Genes 2003; 544: 219–220
  • Dammai V, Subramani S. The human peroxisomal targeting signal receptor, Pex5p, is translocated into the peroxisomal matrix and recycled to the cytosol. Cell 2001; 105: 187–196
  • Rehling P, Skaletz-Rorowski A, Girzalsky W, Voorn-Brouwer T, Franse MM, Distel B, Veenhuis M, Kunau WH, Erdmann R. Pex8p, an intraperoxisomal peroxin of Saccharomyces cerevisiae required for protein transport into peroxisomes binds the PTS1 receptor Pex5p. J Biol Chem 2000; 275: 3593–3602
  • Miura S, Miyazawa S, Osumi T, Hashimoto T, Fujiki Y. Post-translational import of 3-ketoacyl-CoA thiolase into rat-liver peroxisomes in vitro. J Biochem (Tokyo) 1994; 115: 1064–1068
  • Kurochkin IV, Mizuno Y, Konagaya A, Sakaki Y, Schonbach C, Okazaki Y. Novel peroxisomal protease Tysnd1 processes PTS1- and PTS2-containing enzymes involved in beta-oxidation of fatty acids. EMBO J 2007; 26: 835–845
  • Helm M, Luck C, Prestele J, Hierl G, Huesgen PF, Froehlich T, Arnold GJ, Adamska I, Gorg A, Lottspeich F, et al. Dual specificities of the glyoxysomal/peroxisomal processing protease Deg15 in higher plants. Proc Natl Acad Sci USA 2007; 104: 11501–11506
  • Gouveia AMM, Reguenga C, Oliveira MEM, Sa-Miranda C, Azevedo JE. Characterization of peroxisomal Pex5p from rat liver – Pex5p in the Pex5p-Pex14p membrane complex is a transmembrane protein. J Biol Chem 2000; 275: 32444–32451
  • Kerssen D, Hambruch E, Klaas W, Platta HW, de Kruijff B, Erdmann R, Kunau WH, Schliebs W. Membrane association of the cycling peroxisome import receptor Pex5p. J Biol Chem 2006; 281: 27003–27015
  • Erdmann R, Schliebs W. Peroxisomal matrix protein import: The transient pore model. Nature Rev Molec Cell Biol 2005; 6: 738–742
  • Wang DY, Visser NV, Veenhuis M, van der Klei IJ. Physical interactions of the peroxisomal targeting signal 1 receptor Pex5p, studied by fluorescence correlation spectroscopy. J Biol Chem 2003; 278: 43340–43345
  • Waterham HR, Titorenko VI, Haima P, Cregg JM, Harder W, Veenhuis M. The Hansenula polymorpha Per1 gene is essential for peroxisome biogenesis and encodes a peroxisomal matrix protein with both carboxy-terminal and amino-terminal targeting signals. J Cell Biol 1994; 127: 737–749
  • Zhang L, Leon S, Subramani S. Two independent pathways traffic the interperoxisomal peroxin PpPex8p into peroxisomes: mechanism and evolutionary implications. Mol Biol Cell 2006; 17: 690–699
  • Chang CC, Warren DS, Sacksteder KA, Gould SJ. PEX12 interacts with PEX5 and PEX10 and acts downstream of receptor docking in peroxisomal matrix protein import. J Cell Biol 1999; 147: 761–773
  • Dodt G, Gould SJ. Multiple PEX genes are required for proper subcellular distribution and stability of Pex5p, the PTS1 receptor: Evidence that PTS1 protein import is mediated by a cycling receptor. J Cell Biol 1996; 135: 1763–1774
  • Hu JP, Aguirre M, Peto C, Alonso J, Ecker J, Chory J. A role for peroxisomes in photomorphogenesis and development of Arabidopsis. Science 2002; 297: 405–409
  • Schumann U, Wanner G, Veenhuis M, Schmid M, Gietl C. AthPEX10, a nuclear gene essential for peroxisome and storage organelle formation during Arabidopsis embryogenesis. Proc Natl Acad Sci USA 2003; 100: 9626–9631
  • Sparkes IA, Brandizzi F, Slocombe SP, El-Shami M, Hawes C, Baker A. An Arabidopsis pex10 null mutant is embryo lethal, implicating peroxisomes in an essential role during plant embryogenesis. Plant Physiol 2003; 133: 1809–1819
  • Fan JL, Quan S, Orth T, Awai C, Chory J, Hu JP. The Arabidopsis PEX12 gene is required for peroxisome biogenesis and is essential for development. Plant Physiol 2005; 139: 231–239
  • Nito K, Kamigaki A, Kondo M, Hayashi M, Nishimura M. Functional classification of Arabidopsis peroxisome biogenesis factors proposed from analyses of knockdown mutants. Plant Cell Physiol 2007; 48: 763–774
  • Platta HW, Grunau S, Rosenkranz K, Girzalsky W, Erdmann R. Functional role of the AAA peroxins in dislocation of the cycling PTS1 receptor back to the cytosol. Nat Cell Biol 2005; 7: 817–822
  • Miyata N, Fujiki Y. Shuttling mechanism of peroxisome targeting signal type 1 receptor Pex5: ATP-independent import and ATP-dependent export. Mol Cell Biol 2005; 25: 10822–10832
  • Koller A, Snyder WB, Faber KN, Wenzel TJ, Rangell L, Keller GA, Subramani S. Pex22p of Pichia pastoris, essential for peroxisomal matrix protein import, anchors the ubiquitin-conjugating enzyme, Pex4p, on the peroxisomal membrane. J Cell Biol 1999; 146: 99–112
  • Collins CS, Kalish JE, Morrell JC, McCaffery JM, Gould SJ. The peroxisome biogenesis factors Pex4p, Pex22p, Pex1p, and Pex6p act in the terminal steps of peroxisomal matrix protein import. Mol Cell Biol 2000; 20: 7516–7526
  • Zolman BK, Monroe-Augustus M, Silva ID, Bartel B. Identification and functional characterization of Arabidopsis PEROXIN4 and the interacting protein PEROXIN22. Plant Cell 2005; 17: 3422–3435
  • Zolman BK, Bartel B. An Arabidopsis indole-3-butyric acid-response mutant defective in PEROXIN6, an apparent ATPase implicated in peroxisomal function. Proc Natl Acad Sci USA 2004; 101: 1786–1791
  • Wiebel FF, Kunau WH. The Pas2 protein essential for peroxisome biogenesis is related to ubiquitin-conjugating enzymes. Nature 1992; 359: 73–76
  • Kiel J, Emmrich K, Meyer HE, Kunau WH. Ubiquitination of the peroxisomal targeting signal type 1 receptor, Pex5p, suggests the presence of a quality control mechanism during peroxisomal matrix protein import. J Biol Chem 2005; 280: 1921–1930
  • Kragt A, Brouwer TV, van den Berg M, Distel B. The Saccharomyces cerevisiae peroxisomal import receptor Pex5p is monoubiquitinated in wild type cells. J Biol Chem 2005; 280: 7867–7874
  • Platta H, Girzalsky W, Erdmann R. Ubiquitination of the peroxisomal import receptor Pex5p. Biochem J 2004; 384: 37–45
  • Purdue PE, Lazarow PB. Pex18p is constitutively degraded during peroxisome biogenesis. J Biol Chem 2001; 276: 47684–47689
  • Platta HW, El Magraoui F, Schlee D, Grunau S, Girzalsky W, Erdmann R. Ubiquitination of the peroxisomal import receptor Pex5p is required for its recycling. J Cell Biol 2007; 177: 197–204
  • Williams C, van den Berg M, Sprenger RR, Distel B. A conserved cysteine is essential for Pex4p-dependent ubiquitination of the peroxisomal import receptor Pex5p. J Biol Chem 2007; 282: 22534–22543
  • Kiel J, Otzen M, Veenhuis M, van der Klei IJ. Obstruction of polyubiquitination affects PTS1 peroxisomal matrix protein import. Biochimica et Biophysica Acta-Molec Cell Res 2005; 1745: 176–186
  • Yahraus T, Braverman N, Dodt G, Kalish JE, Morrell JC, Moser HW, Valle D, Gould SJ. The peroxisome biogenesis disorder group 4 gene, PXAAA1, encodes a cytoplasmic ATPase required for stability of the PTS1 receptor. EMBO J 1996; 15: 2914–2923
  • van der Klei IJ, Hilbrands RE, Kiel J, Rasmussen SW, Cregg JM, Veenhuis M. The ubiquitin-conjugating enzyme Pex4p of Hansenula polymorpha is required for efficient functioning of the PTS1 import machinery. EMBO J 1998; 17: 3608–3618
  • Kiel J, Hilbrands RE, Van der Klei IJ, Rasmussen SW, Salomons FA, Van der Heide M, Faber KN, Cregg JM, Veenhuis M. Hansenula polymorpha Pex1p and Pex6p are peroxisome-associated AAA proteins that functionally and physically interact. Yeast 1999; 15: 1059–1078
  • Pickart CM. Mechanisms underlying ubiquitination. Annu Rev Biochem 2001; 70: 503–533
  • Carvalho AF, Pinto MP, Grou UP, Alencastre IS, Fransen M, Sa-Miranda C, Azevedo JE. Ubiquitination of mammalian pex5p, the peroxisomal import receptor. J Biol Chem 2007; 282: 31267–31272
  • Freemont PS, Hanson IM, Trowsdale J. A novel cysteine-rich sequence motif. Cell 1991; 64: 483–484
  • Barlow PN, Luisi B, Milner A, Elliott M, Everett R. Structure of the C3hc4 domain by H-1-nuclear magnetic-resonance spectroscopy – a new structural class of zinc-finger. J Mol Biol 1994; 237: 201–211
  • Borden KLB. RING domains: master builders of molecular scaffolds?. J Mol Biol 2000; 295: 1103–1112
  • Borden KLB, Boddy MN, Lally J, O'Reilly NJ, Martin S, Howe K, Solomon E, Freemont PS. The solution structure of the RING finger domain from the acute promyelocytic leukemia proto-oncoprotein Pml. EMBO J 1995; 14: 1532–1541
  • Lovering R, Hanson IM, Borden KLB, Martin S, Oreilly NJ, Evan GI, Rahman D, Pappin DJC, Trowsdale J, Freemont PS. Identification and preliminary characterization of a protein motif related to the zinc finger. Proc Natl Acad Sci USA 1993; 90: 2112–2116
  • Lorick KL, Jensen JP, Fang SY, Ong AM, Hatakeyama S, Weissman AM. RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc Natl Acad Sci USA 1999; 96: 11364–11369
  • Okumoto K, Abe I, Fujiki Y. Molecular anatomy of the peroxin Pex12p – RING finger domain is essential for Pex12p function and interacts with the peroxisome-targeting signal type 1-receptor Pex5p and a ring peroxin, Pex10p. J Biol Chem 2000; 275: 25700–25710
  • Hazra PP, Suriapranata I, Snyder WB, Subramani S. Peroxisome remnants in pex3-delta cells and the requirement of Pex3p for interactions between the peroxisomal docking and translocation subcomplexes. Traffic 2002; 3: 560–574
  • Eckert JH, Johnsson N. Pex10p links the ubiquitin conjugating enzyme Pex4p to the protein import machinery of the peroxisome. J Cell Sci 2003; 116: 3623–3634
  • Birschmann I, Stroobants AK, van den Berg M, Schafer A, Rosenkranz K, Kunau WH, Tabak HF. Pex15p of Saccharomyces cerevisiae provides a molecular basis for recruitment of the AAA peroxin Pex6p to peroxisomal membranes. Mol Biol Cell 2003; 14: 2226–2236
  • Rosenkranz K, Birschmann I, Grunau S, Girzalsky W, Kunau WH, Erdmann R. Functional association of the AAA complex and the peroxisomal importomer. FEBS J 2006; 273: 3804–3815
  • Gould SJ, Keller GA, Subramani S. Identification of a peroxisomal targeting signal at the carboxy-terminus of firefly luciferase. J Cell Biol 1987; 105: 2923–2931
  • Gould SJ, Collins CS. Peroxisomal-protein import: is it really that complex?. Nature Reviews Molecular Cell Biology 2002; 3: 382–389
  • Aksam EB, Koek A, Kiel J, Jourdan S, Veenhuis M, van der Klei IJ. A peroxisomal lon protease and peroxisome degradation by autophagy play key roles in vitality of Hansenula polymorpha cells. Autophagy 2007; 3: 96–105
  • Walton PA, Wendland M, Subramani S, Rachubinski RA, Welch WJ. Involvement of 70-Kd heat shock proteins in peroxisomal import. J Cell Biol 1994; 125: 1037–1046
  • Harano T, Nose S, Uezu R, Shimizu N, Fujiki Y. Hsp70 regulates the interaction between the peroxisome targeting signal type 1 (PTS1)-receptor Pex5p and PTS1. Biochem J 2001; 357: 157–165
  • Hettema EH, Ruigrok CCM, Koerkamp MG, van den Berg M, Tabak HF, Distel B, Braakman I. The cytosolic DnaJ-like protein Djp1p is involved specifically in peroxisomal protein import. J Cell Biol 1998; 142: 421–434

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.