270
Views
8
CrossRef citations to date
0
Altmetric
Papers

Signal peptidase I-mediated processing of an engineered mammalian cytochrome b5 precursor is an exocytoplasmic post-translocational event in Escherichia coli

, &
Pages 388-399 | Received 27 Feb 2008, Published online: 09 Jul 2009

References

  • Izard JW, Kendall DA. Signal peptides: exquisitely designed transport promoters. Mol Microbiol 1994; 13: 765–773
  • von Heijne G. The signal peptide. J Membr Biol 1990; 115: 195–201
  • de Keyzer J, van der Does C, Driessen AJ. The bacterial translocase: a dynamic protein channel complex. Cell Mol Life Sci 2003; 60: 2034–2052
  • Ullers RS, Luirink J, Harms N, Schwager F, Georgopoulos C, Genevaux P. SecB is a bona fide generalized chaperone in Escherichia coli. Proc Natl Acad Sci USA 2004; 101: 7583–7588
  • Luirink J, Sinning I. SRP-mediated protein targeting: structure and function revisited. Biochim Biophys Acta 2004; 1694: 17–35
  • Akita M, Sasaki S, Matsuyama S, Mizushima S. SecA interacts with secretory proteins by recognizing the positive charge at the amino terminus of the signal peptide in Escherichia coli. J Biol Chem 1990; 265: 8164–8169
  • Chen L, Tai PC. Effects of nucleotides on ATP-dependent protein translocation into Escherichia coli membrane vesicles. J Bacteriol 1986; 168: 828–832
  • Economou A, Pogliano JA, Beckwith J, Oliver DB, Wickner W. SecA membrane cycling at SecYEG is driven by distinct ATP binding and hydrolysis events and is regulated by SecD and SecF. Cell 1995; 83: 1171–1181
  • Driessen AJ. Precursor protein translocation by the Escherichia coli translocase is directed by the protonmotive force. EMBO J 1992; 11: 847–853
  • Tuteja R. Type I signal peptidase: an overview. Arch Biochem Biophys 2005; 441: 107–111
  • Randall LL. Translocation of domains of nascent periplasmic proteins across the cytoplasmic membrane is independent of elongation. Cell 1983; 33: 231–240
  • Kaderbhai N, Kaderbhai MA. Expression, isolation, and characterization of a signal sequence-appended chimeric precursor protein. Protein Express Purificat 1996; 7: 237–246
  • Karim A, Kaderbhai N, Evans A, Harding V, Kaderbhai MA. Efficient bacterial export of a eukaryotic cytoplasmic cytochrome. Biotechnology (NY) 1993; 11: 612–617
  • Akhtar MK, Kaderbhai NN, Hopper DJ, Kelly SL, Kaderbhai MA. Export of a heterologous cytochrome P450 (CYP105D1) in Escherichia coli is associated with periplasmic accumulation of uroporphyrin. J Biol Chem 2003; 278: 45555–45562
  • Ausubel FM, Brent R, Kingston RE, Moore DE, Seidman JG, Smith JA, Struhl KA. 2001. vol. 1 New York: John Wiley & Sons.
  • Harding V, Karim A, Kaderbhai N, Jones A, Evans A, Kaderbhai MA. Processing of chimeric mammalian cytochrome b5 precursors in Escherichia coli: reaction specificity of signal peptidase and identification of an aminopeptidase in post-translocational processing. Biochem J 1993; 293: 751–756
  • Liu YY, Akhtar MK, Ourmozdi EP, Kaderbhai N, Kaderbhai MA. A chloroplast envelope-transfer sequence functions as an export signal in Escherichia coli. FEBS Lett 2000; 469: 61–66
  • Kaderbhai N, Karim A, Hankey W, Jenkins G, Venning J, Kaderbhai MA. Glycine-induced extracellular secretion of a recombinant cytochrome expressed in Escherichia coli. Biotechnol Appl Biochem 1997; 25: 53–61
  • Bradford M. A rapid and sensitive method for the quantitation of protein utilising the principle of protein-dye binding. Analyt Biochem 1976; 72: 248–254
  • Zwizinski C, Wickner W. Purification and characterization of leader (signal) peptidase from Escherichia coli. J Biol Chem 1980; 255: 7973–7977
  • Gallagher SR. 2001. One-dimensional SDS gel electrophoresis of proteins. In: Ausubel FM, Brent R, Kingston RE, Moore DE, Seidman JG, Smith JA, Struhl KA Current Protocols in Molecular Biology. vol. 2. New YorkUSA: John Wiley & Sons. pp 10.2A.1–10.2A.29.
  • Kaderbhai MA, He MY, Beechey RB, Kaderbhai N. Coexpression of a precursor and the mature protein of wheat ribulose- 1,5-bisphosphate carboxylase small subunit from a single gene in Escherichia coli. DNA Cell Biol 1990; 9: 11–25
  • Gallagher J, Kaderbhai N, Kaderbhai MA. Gene-dose-dependent expression of soluble mammalian cytochrome b5 in Escherichia coli. Appl Microbiol Biotechnol 1992; 38: 77–83
  • Blattner FR, Plunkett G.3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y. The complete genome sequence of Escherichia coli K-12. Science 1997; 277: 1453–1474
  • Angelini S, Moreno R, Gouffi K, Santini C, Yamagishi A, Berenguer J, Wu L. Export of Thermus thermophilus alkaline phosphatase via the twin-arginine translocation pathway in Escherichia coli. FEBS Lett 2001; 506: 103–107
  • Fujiki Y, Hubbard AL, Fowler S, Lazarow PB. Isolation of intracellular membranes by means of sodium carbonate treatment – application to endoplasmic reticulum. J Cell Biol 1982; 93: 97–102
  • Kaderbhai MA, Davey HM, Kaderbhai NN. A directed evolution strategy for optimized export of recombinant proteins reveals critical determinants for preprotein discharge. Protein Sci 2004; 13: 2458–2469
  • Kaderbhai MA, Morgan R, Kaderbhai NN. The membrane-interactive tail of cytochrome b(5) can function as a stop-transfer sequence in concert with a signal sequence to give inversion of protein topology in the endoplasmic reticulum. Arch Biochem Biophys 2003; 412: 259–266
  • Breyton C, Haase W, Rapoport TA, Kuhlbrandt W, Collinson I. Three-dimensional structure of the bacterial protein-translocation complex SecYEG. Nature 2002; 418: 662–665
  • Cannon KS, Clemons WM, Jr, Or E, Shibata Y, Rapoport TA. Disulfide bridge formation between SecY and a translocating polypeptide localizes the translocation pore to the center of SecY. J Cell Biol 2005; 169: 219–225
  • Plath K, Mothes W, Wilkinson BM, Stirling CJ, Rapoport TA. Signal sequence recognition in posttranslational protein transport across the yeast ER membrane. Cell 1998; 94: 795–807
  • Carlos JL, Paetzel M, Brubaker G, Karla A, Ashwell CM, Lively MO, Cao G, Bullinger P, Dalbey RE. The role of the membrane-spanning domain of type I signal peptidases in substrate cleavage site selection. J Biol Chem 2000; 275: 38813–38822
  • Bordier C. Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem 1981; 256: 1604–1607
  • Lemberg MK, Bland FA, Weihofen A, Braud VM, Martoglio B. Intramembrane proteolysis of signal peptides: an essential step in the generation of HLA-E epitopes. J Immunol 2001; 167: 6441–6446
  • Kim AC, Oliver DC, Paetzel M. Crystal structure of a bacterial signal Peptide peptidase. J Mol Biol 2008; 376: 352–366

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.