588
Views
21
CrossRef citations to date
0
Altmetric
Papers

Helix dynamics in a membrane transport protein: comparative simulations of the glycerol-3-phosphate transporter and its constituent helices

&
Pages 571-583 | Received 15 May 2008, Published online: 09 Jul 2009

References

  • Wallin E, von Heijne G. Genome-wide analysis of integral membrane proteins from eubacterial, archean, and eukaryotic organisms. Prot Sci 1998; 7: 1029–1038
  • Jones DT. Do transmembrane protein superfolds exist?. FEBS Lett 1998; 423: 281–285
  • Terstappen GC, Reggiani A. In silico research in drug discovery. Trends Pharmacol Sci 2001; 22: 23–26
  • Hopkins AL, Groom CR. The druggable genome. Nat Rev Drug Discov 2002; 1: 727–730
  • Paulsen IT, Nguyen L, Sliwinski MK, Rabus R, Saier MH, Jr. Microbial genome analyses: comparative transport capabilities in eighteen prokaryotes. J Mol Biol 2000; 301: 75–100
  • Pao SS, Paulsen IT, Saier MH. Major facilitator superfamily. Microbiol Mol Biol Rev 1998; 62: 1–34
  • Abramson J, Smirnova I, Kasho V, Verner G, Kaback HR, Iwata S. Structure and mechanism of the lactose permease of Escherichia coli. Science 2003; 301: 610–615
  • Huang Y, Lemieux MJ, Song J, Auer M, Wang DN. Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science 2003; 301: 616–620
  • Yin Y, He X, Szewczyk P, Nguyen T, Chang G. Structure of the multidrug transporter EmrD from Escherichia coli. Science 2006; 312: 741–744
  • Hirai T, Heymann JA, Shi D, Sarker R, Maloney PC, Subramanian S. Three-dimensional structure of a bacterial oxalate transporter. Nature Struct Biol 2002; 9: 597–600
  • Hirai T, Subramaniam S. Structure and transport mechanism of the bacterial oxalate transporter OxlT. Biophys J 2004; 87: 3600–3607
  • Abramson J, Kaback HR, Iwata S. Structural comparison of lactose permease and the glycerol-3-phosphate antiporter: members of the major facilitator superfamily. Curr Opin Struct Biol 2004; 14: 413–419
  • Hayashi S, Koch JP, Lin ECC. Active transport of L-alpha-glycero-phosphate in Escherichia coli. J Biol Chem 1964; 239: 3098–3105
  • Elvin CM, Hardy CM, Rosenberg H. Pi exchange mediated by the GlpT-dependent sn-glycerol-3-phosphate transport system in Escherichia coli. J Bacteriol 1985; 161: 1054–1058
  • Ambudkar SV, Larson TJ, Maloney PC. Reconstitution of sugar phosphate transport systems of Escheichia coli. J Biol Chem 1986; 261: 9083–9086
  • Lemieux MJ, Huang Y, Wang DN. The structural basis of substrate translocation by the Escherichia coli glycerol-3-phosphate transporter: a member of the major facilitator superfamily. Curr Opin Struct Biol 2004; 14: 405–412
  • Lemieux MJ, Huang YF, Wang DN. Glycerol-3-phosphate transporter of Escherichia coli: structure, function and regulation. Res Microbiol 2004; 155: 623–629
  • Law CJ, Yang Q, Soudant C, Maloney PC, Wang DN. Kinetic evidence is consistent with the rocker-switch mechanism of membrane transport by GlpT. Biochem 2007; 46: 12190–12197
  • Vardy E, Arkin IT, Gottschalk KE, Kaback HR, Schuldiner S. Structural conservation in the major facilitator superfamily as revealed by comparative modeling. Prot Sci 2004; 13: 1832–1840
  • Brandl CJ, Deber CM. Hypothesis about the function of membrane-buried proline residues in transport proteins. Proc Natl Acad Sci USA 1986; 83: 917–921
  • von Heijne G. Proline kinks in transmembrane α-helices. J Mol Biol 1991; 218: 499–503
  • Williams KA, Deber CM. Proline residues in transmembrane helices: structural or dynamic role?. Biochem 1991; 30: 8919–8923
  • Woolfson DN, Mortishire-Smith RJ, Williams DH. Conserved positioning of proline residues in membrane-spanning helices of ion-channel proteins. Biochem Biophys Res Comm 1991; 175: 733–737
  • Sansom MSP. Proline residues in transmembrane helices of channel and transport proteins: a molecular modelling study. Prot Engng 1992; 5: 53–60
  • Li SC, Goto NK, Williams KA, Deber CM. alpha-Helical, but not beta-sheet, propensity of proline is determined by peptide environment. Proc Natl Acad Sci USA 1996; 93: 6676–6681
  • Cordes FS, Bright JN, Sansom MSP. Proline-induced distortions of transmembrane helices. J Mol Biol 2002; 323: 951–960
  • Bright JN, Sansom MSP. The flexing/twirling helix: exploring the flexibility about molecular hinges formed by proline and glycine motifs in transmembrane helices. J Phys Chem B 2003; 107: 627–636
  • Sansom MSP, Weinstein H. Hinges, swivels & switches: the role of prolines in signalling via transmembrane (-helices. Trends Pharm Sci 2000; 21: 445–451
  • Beckstein O, Biggin PC, Bond PJ, Bright JN, Domene C, Grottesi A, Holyoake J, Sansom MSP. Ion channel gating: insights via molecular simulations. FEBS Lett 2003; 555: 85–90
  • De Jesus M, Jin J, Guffanti AA, Krulwich TA. Importance of the GP dipeptide of the antiporter motif and other membrane-embedded proline and glycine residues in tetracycline efflux protein Tet(L). Biochem 2005; 44: 12896–12904
  • Popot JL. Integral membrane protein structure: transmembrane ( helices as autonomous folding domains. Curr Opin Strc Biol 1993; 3: 532–540
  • Popot JL, Engelman DM. Helical membrane protein folding, stability, and evolution. Ann Rev Biochem 2000; 69: 881–922
  • Engelman DM, Chen Y, Chin C, Curran R, Dixon AM, Dupuy A, Lee A, Lehnert U, Mathews E, Reshetnyak Y, Senes A, Popot JL. Membrane protein folding: beyond the two stage model. FEBS Lett 2003; 555: 122–125
  • Bowie JU. Solving the membrane protein folding problem. Nature 2005; 438: 581–589
  • Bennett M, D'Rozario R, Sansom MSP, Yeagle PL. Asymmetric stability among transmembrane helices of lactose permease. Biochem 2006; 45: 8088–8095
  • Holyoake J, Sansom MSP. Conformational change in an MFS Protein: MD simulations of LacY. Structure 2007; 15: 873–884
  • Bond PJ, Sansom MSP. Membrane protein dynamics vs. environment: simulations of OmpA in a micelle and in a bilayer. J Mol Biol 2003; 329: 1035–1053
  • Ash WL, Zlomislic MR, Oloo EO, Tieleman DP. Computer simulations of membrane proteins. Biochim Biophys Acta 2004; 1666: 158–189
  • Gumbart J, Wang Y, Aksimentiev A, Tajkhorshid E, Schulten K. Molecular dynamics simulations of proteins in lipid bilayers. Curr Opin Struct Biol 2005; 15: 423–431
  • Ivetac A, Campbell JD, Sansom MSP. Dynamics and function in a bacterial ABC transporter: simulation studies of the BtuCDF system and its components. Biochem 2007; 46: 2767–2778
  • Kabsch W, Sander C. Dictionary of protein secondary structure: pattern-recognition of hydrogen-bonded and geometrical features. Biopolymers 1983; 22: 2577–2637
  • Lindahl E, Hess B, van der Spoel D. GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Molec Model 2001; 7: 306–317
  • van Gunsteren WF, Kruger P, Billeter SR, Mark AE, Eising AA, Scott WRP, Huneberger PH, Tironi IG 1996. Biomolecular simulation: the GROMOS96 manual and user guide, Biomos & Hochschulverlag AG an der ETH Zurich, Groningen & Zurich.
  • van der Spoel D, van Maaren PJ, Berendsen HJC. A systematic study of water models for molecular simulations. J Chem Phys 1998; 108: 10220–10230
  • Darden T, York D, Pedersen L. Particle mesh Ewald – an N.log(N) method for Ewald sums in large systems. J Chem Phys 1993; 98: 10089–10092
  • Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR. Molecular dynamics with coupling to an external bath. J Chem Phys 1984; 81: 3684–3690
  • Hess B, Bekker H, Berendsen HJC, Fraaije JGEM. LINCS: A linear constraint solver for molecular simulations. J Comp Chem 1997; 18: 1463–1472
  • Sali A, Blundell TL. Comparative protein modeling by satisfaction of spatial restraints. J Mol Biol 1993; 234: 779–815
  • Sanchez R, Sali A. Comparative protein structure modeling. Introduction and practical examples with modeller. Methods Mol Biol 2000; 143: 97–129
  • Holyoake J, Caulfeild V, Baldwin SA, Sansom MSP. Modelling, docking and simulation of the major facilitator superfamily. Biophys J 2006; 91: L84–86
  • White SH, von Heijne G. The machinery of membrane protein assembly. Curr Opin Struct Biol 2004; 14: 397–404
  • Grottesi A, Domene C, Sansom MSP. Conformational dynamics of M2 helices in KirBac channels: helix flexibility in relation to gating via molecular dynamics simulations. Biochem 2005; 44: 14586–14594
  • Sands Z, Grottesi A, Sansom MSP. The intrinsic flexibility of the Kv voltage sensor and its implications for channel gating mechanisms. Biophys J 2005; 90: 1598–1606
  • Law CJ , Almqvist J , Bernstein A , Goetz RM , Huang Y , Soudant C , Laaksonen A , Hovmoller S , Wang D-N , 2008. Salt bridge dynamics control substrate-induced conformational change in the membrane transporter GlpT. J Mol Biol 826–837.
  • Faham S, Watanabe A, Besserer GM, Cascio D, Specht A, Hirayama BA, Wright EM, Abramson J. The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na + /sugar symport. Science 2008; 321: 810–814
  • Bright JN, Sansom MSP. The Kv channel S6 helix as a molecular switch: simulation studies. IEE Proc Nanobiotechnol 2004; 151: 17–27
  • Yohannan S, Faham S, Yang D, Whitelegge JP, Bowie JU. The evolution of transmembrane helix kinks and the structural diversity of G protein-coupled receptors. Proc Natl Acad Sci USA 2004; 101: 959–963
  • Peralvarez-Marin A, Bourdelande JL, Querol E, Padros E. The role of proline residues in the dynamics of transmembrane helices: the case of bacteriorhodopsin. Mol Memb Biol 2006; 23: 127–135
  • Yohannan S, Yang D, Faham S, Boulting G, Whitelegge J, Bowie JU. Proline substitutions are not easily accommodated in a membrane protein. J Mol Biol 2004; 341: 1–6
  • Cuthbertson JM, Doyle DA, Sansom MSP. Transmembrane helix prediction: a comparative evaluation and analysis. Prot Engng Des Sel 2005; 18: 295–308
  • Woods CJ, Essex JW, King MA. The development of replica-exchange based free energy methods. J Phys Chem B 2003; 107: 13703–13710
  • Wood JM, Culham DE, Hillar A, Vernikovska YI, Liu F, Boggs JM, Keates RAB. A structural model for the osmosensor, transporter, and osmoregulator ProP of Escherichia coli. Biochem 2005; 44: 5634–5646
  • Lemieux MJ. Eukaryotic major facilitator superfamily transporter modeling based on the prokaryotic GlpT crystal structure. Mol Memb Biol 2007; 24: 333–341
  • Salas-Burgos A, Iserovich P, Zuniga F, Vera JC, Fischbarg J. Predicting the three-dimensional structure of the human facilitative glucose transporter Glut1 by a novel evolutionary homology strategy. Biophys J 2004; 87: 2990–2999
  • Olkhova E, Padan E, Michel H. The influence of protonation states on the dynamics of the NhaA antiporter from Escherichia coli. Biophys J 2007; 92: 3784–3791
  • Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E. Crystal structure of a bacterial homologue of Na+/Cl−-dependent neurotransmitter transporters. Nature 2005; 437: 215–223
  • Lansing JC, Hu JGG, Belenky M, Griffin RG, Herzfeld J. Solid-state NMR investigation of the buried X-proline peptide bonds of bacteriorhodopsin. Biochem 2003; 42: 3586–3593
  • Smart OS, Neduvelil JG, Wang X, Wallace BA, Sansom MSP. Hole: a program for the analysis of the pore dimensions of ion channel structural models. J Mol Graph 1996; 14: 354–360

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.