512
Views
14
CrossRef citations to date
0
Altmetric
PAPERS

Rapid transmembrane diffusion of ceramide and dihydroceramide spin-labelled analogues in the liquid ordered phase

, , , , , & show all
Pages 194-204 | Received 22 Jul 2008, Published online: 09 Jul 2009

References

  • Kornberg RD, McConnell HM. Inside-outside transitions of phospholipids in vesicle membranes. Biochemistry 1971; 10: 1111–1120
  • Homan R, Pownall HJ. Transbilayer diffusion of phospholipids: dependence on headgroup structure and acyl chain length. Biochim Biophys Acta 1988; 938: 2155–2166
  • Zachowski A. Phospholipids in animal and eukaryotic membranes: transverse asymmetry and movement. Biochem J 1993; 294: 1–14
  • Kleinfeld AM, Chu P, Romero C. Transport of long-chain native fatty acids across lipid bilayer membranes indicates that transbilayer flip-flop is rate limiting. Biochemistry 1997; 36: 14146–14158
  • Zeng Y, Han X, Schlesinger P, Gross RW. Nonesterified fatty acids induce transmembrane monovalent cation flux: host-guest interactions as determinants of fatty acid-induced ion transport. Biochemistry 1998; 37: 9497–9508
  • Hamilton JA. Fast flip-flop of cholesterol and fatty acids in membranes: implications for membrane transport proteins. Curr Opin Lipidol 2003; 14: 263–271
  • López-Montero I, Rodriguez N, Cribier S, Pohl A, Vélez M, Devaux PF. Rapid transbilayer movement of ceramides in phospholipid vesicles and erythrocytes. J Biol Chem 2005; 280: 25811–25819
  • Eckford PD, Sharom FJ. The reconstituted P-glycoprotein multidrug transporter is a flippase for glucosylceramide and other simple glycosphingolipids. Biochem J 2005; 389: 517–526
  • Mitsutake S, Igarashi Y. Transbilayer movement of ceramide in the plasma membrane of live cells. Biochem Biophys Res Commun 2007; 359: 622–627
  • Wimley WC, Thompson TE. Exchange and flip-flop of dimyristoylphosphatidylcholine in liquid-crystalline, gel, and two-component, two-phase large unilamellar vesicles. Biochemistry 1990; 29: 1296–1303
  • Simons K, Ikonen E. Functional rafts in cell membranes. Nature 1997; 387: 569–572
  • Engelman DM. Membranes are more mosaic than fluid. Nature 2005; 438: 578–580
  • de Almeida RF, Fedorov A, Prieto M. Sphingomyelin/phosphatidylcholine/cholesterol phase diagram: boundaries and composition of lipid rafts. Biophys J 2003; 85: 2406–2416
  • Veatch SL, Keller SL. Seeing spots: complex phase behavior in simple membranes. Biochim Biophys Acta 2005; 1746: 172–185
  • Devaux P, McConnell HM. Lateral diffusion in spin-labeled phosphatidylcholine multilayers. J Am Chem Soc 1972; 94: 4475–4481
  • Kahya N, Scherfeld D, Bacia K, Poolman B, Schwille P. Probing lipid mobility of raft-exhibiting model membranes by fluorescence correlation spectroscopy. J Biol Chem 2003; 278: 28109–28115
  • Müller P, Herrmann A. Rapid transbilayer movement of spin labeled steroids in human erythrocytes and in liposomes. Biophys J 2002; 82: 1418–1428
  • Van Meer G. Lipid traffic in animal cells. Annu Rev Cell Biol 1989; 5: 247–275
  • Simons K, Ikonen E. How cells handle cholesterol. Science 2000; 290: 1721–1726
  • Van Meer G, Lisman Q. Sphingolipid transport: rafts and translocators. J Biol Chem 2002; 277: 25855–25858
  • Van Helvoort A, Smith AJ, Sprong H, Fritsche I, Schinkel AH, Borst P, van Meer G. MDR1 P-glycoprotein is a lipid translocase of broad specificity, while MDR3 P-glycoprotein specifically translocates phosphatidylcholine. Cell 1996; 87: 507–517
  • Megha, London E. 2004. Ceramide selectively displace cholesterol from ordered lipid domains. J Biol Chem 279:9997–10004
  • Buton X, Herve P, Kubelt J, Tannert A, Burger KN, Fellmann P, Muller P, Herrmann A, Seigneuret M, Devaux PF. Transbilayer movement of monohexosylsphingolipids in endoplasmic reticulum and Golgi membranes. Biochemistry 2002; 41: 13106–13115
  • Zachowski A, Fellman P, Devaux PF. Absence of transbilayer diffusion of spin-labelled sphingomyelin on human erythrocytes. Comparison with the diffusion of several spin-labelled glycerophospholipids. Biochim Biophys Acta 1985; 815: 510–514
  • Fellmann P, Zachowski A, Devaux PF. Synthesis and use of spin-labelled lipids for studies of the transmembrane movement of phospholipids. Methods Mol Biol 1994; 27: 161–175
  • Devaux PF, Fellmann P, Herve P. Investigation on lipid asymmetry using lipid probes: Comparison between spin-labelled lipids and fluorescent lipids. Chem Phys Lipids 2002; 116: 115–134
  • Sot J, Goñi FM, Alonso A. Molecular associations and surface-active properties of short- and long-N-acyl chain ceramides. Biochim Biophys Acta 2005; 1711: 12–19
  • Verkleij AJ, Zwaal RF, Roelofsen B, Comfurius P, Kastelijn D, van Deenen LL. The asymmetric distribution of phospholipids in the human red cell membrane. A combined study using phospholipases and freeze-etch electron microscopy. Biochim Biophys Acta 1973; 323: 178–193
  • Traïkia M, Warschawski DE, Lambert O, Rigaud JL, Devaux PF. Asymmetrical membranes and surface tension. Biophys J 2002; 83: 1443–1454
  • Chiantia S, Kahya N, Schwille P. Raft domain reorganization driven by short- and long-chain ceramide: a combained AFM and FCS study. Langmuir 2007; 23: 7659–7665
  • Marx U, Lassmann G, Holzhutter HG, Wustner D, Muller P, Hohlig A, Kubelt J, Herrmann A. Rapid flip-flop of phospholipids in endoplasmic reticulum membranes studied by a stopped-flow approach. Biophys J 2000; 78: 2628–2640
  • Seigneuret M, Devaux PF. ATP-dependent asymmetric distribution of spin-labelled phospholipids in the erythrocyte membrane: relation to shape changes. Proc. Natl Acad Sci USA 1984; 81: 3751–3755
  • Morrot G, Herve P, Zachowski A, Fellmann P, Devaux PF. Aminophospholipid translocase of human erythrocytes: phospholipid substrate specificity and effect of cholesterol. Biochemistry 1989; 28: 3456–3462
  • Zachowski A, Henry JP, Devaux PF. Control of transmembrane lipid asymmetry in chromaffin by an ATP-dependent protein. Nature 1989; 340: 75–76
  • Holthuis JC, Pomorski T, Raggers RJ, Sprong H, Van Meer G. The organizing potential of sphingolipids in intracellular membrane transport. Physiol Rev 2001; 81: 1689–1723
  • Lannert H, Gorgas K, Meissner I, Wieland FT, Jeckel D. Functional organization of the Golgi apparatus in glycosphingolipidbiosynthesis. Lactosylceramide and subsequent glycosphingolipids are formed in the lumen of the late Golgi. J Biol Chem 1998; 273: 2939–2946
  • Kano F, Sako Y, Tagaya M, Yanagida T, Murata M. Reconstitution of brefeldin A-induced golgi tubulation and fusion with the endoplasmic reticulum in semi-intact chinese hamster ovary cells. Mol Biol Cell 2000; 11: 3073–3087
  • Warnock DE, Lutz MS, Blackburn WA, Young WW, Jr, Baenziger JU. 1994. Transport of newly synthesized glucosylceramide to the plasma membrane by a non-Golgi pathway. Proc Natl Acad Sci USA 91:2708–2712.
  • Burger KN, van der Bijl P, van Meer G. Topology of sphingolipid galactosyltransferases in ER and Golgi: transbilayer movement of monohexosyl sphingolipids is required for higher glycosphingolipids biosynthesis. J Cell Biol 1996; 133: 15–28
  • Lala P, Ito S, Lingwood CA. Rotroviral transfection of Madin-Darby canine kidney cells with human MDR1 results in a major increase in globotriasylceramide and 10(5)- to 10(6)-fold increased cell sensitivity to verocytotoxin. Role of p-glycoprotein in glycolipid synthesis. J Biol Chem 2000; 275: 6246–6251
  • Jeckel D, Karrenbauer A, Birk R, Schimdt RR, Wieland F. Sphingomyelin is synthesized in the cis Golgi. FEBS Lett 1990; 261: 155–157
  • Futerman AH, Stieger B, Hubbard AL, Pagano RE. Sphingomyelin synthesis in the rat liver occurs predominantly at the cis and medial cisternae of the Golgi apparatus. J Biol Chem 1990; 265: 8650–8657
  • Jeckel D, Karrenbauer A, Burger KN, van Meer G, Wieland F. Glucosylceramide is synthesized at the cytosolic surface of various Golgi subfractions. J Cell Biol 1992; 117: 259–267
  • Kallen KJ, Allan D, Whatmore J, Quinn P. Synthesis of surface sphingomyelin in the plasma membrane recycling pathway of BHK cells. Biochim Biophys Acta 1994; 1191: 52–58
  • Sadeghlar F, Sandhoff K, van Echten-Deckert G. Cell type specific localization of sphyngomyelin biosynthesis. FEBS Lett 2000; 478: 9–12
  • Coste H, Martel MB, Got R. Topology of glucosylceramide synthesis in Golgi membranes from porcine submaxillary glands. Biochim Biophys Acta 1986; 858: 6–12
  • Futerman AH, Pagano RE. Determination of the intracellular sites and topology of glucosylceramide synthesis in rat liver. Biochem J 1991; 280: 295–302
  • Van Meer G, Holthuis JC. Sphyngolipid transport in eukariotic cells. Biochim. Biophys Acta 2000; 1486: 145–170
  • Contreras FX, Villar AV, Alonso A, Kolesnick RN, Goñi FM. Sphingomyelinase activity causes transbilayer lipid translocation in model and cell membranes. J Biol Chem 2003; 278: 37169–37174
  • Contreras FX, Basañez G, Alonso A, Herrmann A, Goñi FM. Asymmetric addition of ceramides but not dihydroceramides promotes transbilayer (flip-flop) lipid motion in membranes. Biophys J 2005; 88: 348–359
  • López-Montero I, Vélez M, Devaux PF. Surface tension induced by sphingomyelin to ceramide conversion in lipid membranes. Biochim Biophys Acta 2007; 1768: 553–561
  • Bollinger CR, Teichgräber V, Gulbins E. Ceramide-enriched membrane domains. Biochim Biophys Acta 2005; 1746: 284–294
  • Herrmann A, Zachowski A, Devaux PF. Protein-mediated phospholipid translocation in the endoplasmic reticulum with a low lipid specificity. Biochemistry 1990; 29: 2023–2027
  • Papadopulos A, Vehring S, López-Montero I, Kutschenko L, Stöckl M, Devaux PF, Kozlov M, Pomorski T, Herrmann A. Flippase activity detected with unlabelled lipids by shape changes of giant unilamellar vesicles. J Biol Chem 2007; 282: 15559–15568

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.