1,248
Views
307
CrossRef citations to date
0
Altmetric
Research Article

Detergent-insoluble glycosphingolipid/cholesterol-rich membrane domains, lipid rafts and caveolae (Review)

Pages 145-156 | Published online: 09 Jul 2009

References

  • Ahmed, S. N., Brown, D. A. and London, E., 1997, On the origin of sphingolipid/cholesterol-rich detergent-insoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes. Biochemistry, 36, 10944- 10953.
  • Anderson, H. A., Chen, Y. and Norkin, L. C., 1996, Bound simian virus 40 translocates to caveolin-enriched membrane domains, and its entry is inhibited by drugs that selectively disrupt caveolae. Molecular Biology of the Cell, 7, 1825 - 1834.
  • Anderson, R. G. W., 1993, Caveolae: where incoming and outgoing messengers meet. Proceedings of the National Academy of Sciences USA, 90, 10909- 10913.
  • Baorto, D. M., Gao, Z., Malaviya, R., Dustin, M. L., van der Merwe, A., Lublin, D. M. and Abraham, S. N., 1997, Survival of FimH- expressing enterobacteria in macrophages relies on glycolipid traffic. Nature, 389, 636 - 639.
  • Bickel, P. E., Scherer, P. E., Schnitzer, J. A., Oh, P., Lisanti, M. P. and Lodish, H. F., 1997, Flotillin and epidermal surface antigen define a new family of caveolae-associated integral membrane proteins. Journal of Biological Chemistry, 272, 13793- 13802.
  • Bouillot, C., Prochiantz, A., Rougon, G. and Allinquant, B., 1996, Axonal amyloid precursor protein expressed by neurons in vitro is present in a membrane fraction with caveolae-like properties. Journal of Biological Chemistry, 271, 7640- 7644.
  • Bretscher, M. and Whytock, S., 1977, Membrane-associated vesicles in fibroblasts. Journal of Ultrastructural Research, 61, 215 - 217.
  • Brown, D. A., 1993, The tyrosine kinase connection: how GP I- anchored proteins activate T cells. Current Opinion in Immuno-ogy, 5, 349 - 354.
  • Brown, D. A. and London, E., 1997, Structure of detergent-resistant membrane domains: does phase separation occur in biological membranes? Biochemical and Biophysical Research Communications, 240, 1 - 7.
  • Brown, D. A. and London, E., 1998a, Functions of lipid rafts in biological membranes. Annual Review of Cell and Developmental Biology, 14, 111 - 136.
  • Brown, D. A. and London, E., 1998b, Structure and origin of ordered lipid domains in biological membranes. Journal of Membrane Biology, 164, 103 - 114.
  • Brown, D. A. and Rose, J. K., 1992, Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell, 68, 533 - 544.
  • Brown, R. E., 1998, Sphingolipid organisation in biomembranes: what physical studies of model membranes reveal. Journal of Cell Science, 111, 1 - 9.
  • Cerneus, D. P., Ueffing, E., Posthuma, G., Strous, G. J. and van der Ende, A., 1993, Detergent insolubility of alkaline phosphatase during biosynthetic transport and endocytosis. Role of cholesterol. Journal of Biological Chemistry, 268, 3150- 3155.
  • Chang, W.-J., Ying, Y., Rothberg, K. G., Hooper, N. M., Turner, A. J., Gambliel, H. A., De Gunzburg, J., Mumby, S. M., Gilman, A. G. and Anderson, R. G. W., 1994, Purification and characterization of smooth muscle cell caveolae. Journal of Cell Biology, 126, 127 - 138.
  • Chun, M., Liyanage, U. K., Lisanti, M. P. and Lodish, H. F., 1994, Signal transduction of a G protein-coupled receptor in caveolae: colocalization of endothelin and its receptor with caveolin. Proceedings of the National Academy of Sciences USA, 91, 11728- 11732.
  • Danielsen, E. M., 1995, Involvement of detergent-insoluble complexes in the intracellular transport of intestinal brush border enzymes. Biochemistry, 34, 1596- 1605.
  • Davies, A. A., Wigglesworth, N. M., Allan, D., Owens, R. J. and Crumpton, M. J., 1984, Nonidet P-40 extraction of lymphocyte plasma membrane. Biochemical Journal, 219, 301 - 308.
  • Deckert, M., Ticchioni, M. and Bernard, A., 1996, Endocytosis of GPI-anchored proteins in human lymphocytes: role of glycolipid- based domains, actin cytoskeleton, and protein kinases. Journal of Cell Biology, 133, 791 - 799.
  • Dietzen, D. J., Hastings, W. R. and Lublin, D. M., 1995, Caveolin is palmitoylated on multiple cysteine residues. Palmitoylation is not necessary for localization of caveolin to caveolae. Journal of Biological Chemistry, 270, 6838- 6842.
  • Fan, J. Y., Carpentier, J. L., Vanobberghen, E., Grunfeld, C., Gorden, P. and Orci, L., 1983, Morphological changes of the 3T3- L1 fibroblast plasma membrane upon differentiation to the adipocyte form. Journal of Cell Science, 61, 219 - 230.
  • Forbes, M. S., Rennels, M. and Nelson, E., 1979, Caveolar systems and sarcoplasmic reticulum in coronary smooth muscle cells. Journal of Ultrastructural Research, 67, 325 - 339.
  • Fra, A. M., Williamson, E., Simons, K. and Parton, R. G., 1995, De novo formation of caveolae in lymphocytes by expression of VIP21-caveolin. Proceedings of the National Academy of Sciences USA, 92, 8655- 8659.
  • Friedrichson, T. and Kurzchalia, T. V., 1998, Microdomains of GP I- anchored proteins in living cells revealed by crosslinking. Nature, 394, 802 - 805.
  • Fujimoto, T., 1993, Calcium pump of the plasma membrane is localised in caveolae. Journal of Cell Biology, 120, 1147- 1157.
  • Fujimoto, T., 1996, GPI-anchored proteins, glycosphingolipids, and sphingomyelin are sequestered to caveolae only after cross- linking. Journal of Histochemistry and Cytochemistry, 44, 929 - 941.
  • Garcia-Cardena, G., Oh, P., Liu, J., Schnitzer, J. E. and Sessa, W. C., 1996, Targeting of nitric oxide synthase to endothelial cell caveolae via palmitoylation: implications for nitric oxide signaling. Proceedings of the National Academy of Sciences USA, 93, 6448- 6453.
  • Hagman, J. and Fishman, P. H., 1982, Detergent extraction of cholera toxin and gangliosides from cultured cells and isolated membranes. Biochimica et Biophysica Acta, 720, 181 - 187.
  • Hanada, K., Nishijima, M., Akamatsu, Y. and Pagano, R. E., 1995, Both sphingolipids and cholesterol participate in the detergent insolubility of alkaline phosphatase, a glycosylphosphatidylinosi- tol-anchored protein, in mammalian membranes. Journal of Biological Chemistry, 270, 6254- 6260.
  • Harder, T. and Simons, K., 1997, Caveolae, DIGs, and the dynamics of sphingolipid-cholesterol microdomains. Current Opinion in Cell Biology, 9, 534 - 542.
  • Harder, T., Scheiffele, P., Verkade, P. and Simons, K., 1998, Lipid domain structure of the plasma membrane revealed by patching of membrane components. Journal of Cell Biology, 141, 929 - 942.
  • Hoessli, D. and Rungger-Brandle, E., 1985, Association of specific cell-surface glycoproteins with a Triton X-100-resistant complex of plasma membrane proteins isolated from T-lymphoma cells. Experimental Cell Research, 156, 239 - 250.
  • Hooper, N. M., 1998, Do glycolipid microdomains really exist? Current Biology, 8, R114 - R116.
  • Hooper, N. M. and Turner, A. J., 1988a, Ectoenzymes of the kidney microvillar membrane. Aminopeptidase P is anchored by a glycosyl-phosphatidylinositol moiety. FEBS Letters, 229, 340 - 344.
  • Hooper, N. M. and Turner, A. J., 1988b, Ectoenzymes of the kidney microvillar membrane. Differential solubilization by detergents can predict a glycosyl-phosphatidylinositol membrane anchor. Biochemical Journal, 250, 865 - 869.
  • Hooper, N. M., Low, M. G. and Turner, A. J., 1987, Renal dipeptidase is one of the membrane proteins released by phosphatidylinositol- specific phospholipase C. Biochemical Journal, 244, 465 - 469.
  • Hope, H. R. and Pike, L. J., 1996, Phosphoinositides and phosphoinositide-utilizing enzymes in detergent-insoluble lipid domains. Molecular Biology of the Cell, 7, 843 - 851.
  • Huang, C., Hepler, J. R., Chen, L. T., Gilman, A. G., Anderson, R. G. W. and Mumby, S. M., 1997, Organisation of G proteins and adenylyl cyclase at the plasma membrane. Molecular Biology of the Cell, 8, 2365- 2378.
  • Ikezu, T., Trapp, B. D., Song, K. S., Schlegel, A., Lisanti, M. P. and Okamoto, T., 1998, Caveolae, plasma membrane microdomains for a-secretase-mediated processing of the amyloid precursor protein. Journal of Biological Chemistry, 273, 10485- 10495.
  • Ilangumaran, S. and Hoessli, D. C., 1998, Effects of cholesterol depletion by cyclodextrin on the sphingolipid microdomains of the plasma membrane. Biochemical Journal, 335, 433 - 440.
  • Isshiki, M., Ando, J., Korenaga, R., Kogo, H., Fujimoto, T., Fujita, T. and Kamiya, A., 1998, Endothelial Ca2 + waves preferentially originate at specific loci in caveolin-rich cell edges. Proceedings of the National Academy of Sciences USA, 95, 5009- 5014.
  • Keller, P. and Simons, K., 1997, Post-Golgi biosynthetic trafficking. Journal of Cell Science, 110, 3001- 3009.
  • Kim, H. S. and Campbell, B. J., 1983, Association of renal dipeptidase with the triton-insoluble fraction of kidney microvilli. Journal of Membrane Biology, 75, 115 - 122.
  • Klein, U., Gimpl, G. and Fahrenholz, F., 1995, Alteration of the myometrial plasma membrane cholesterol content with b-cyclo- dextrin modulates the binding affinity of the oxytocin receptor. Biochemistry, 34, 13784- 13793.
  • Kurzchalia, T. V., Dupree, P. and Monier, S., 1994, VIP21-Caveolin, a protein of the trans-Golgi network and caveolae. FEBS Letters, 346, 88 - 91.
  • Kurzchalia, T., Dupree, P., Parton, R. G., Kellner, R., Virta, H., Lehnert, M. and Simons, K., 1992, VIP21, a 21-kD membrane protein is an integral component of trans-Golgi-network-derived transport vesicles. Journal of Cell Biology, 118, 1003- 1014.
  • Kurzchalia, T. V., Hartmann, E. and Dupree, P., 1995, Guilt by insolubility—does a protein’s detergent insolubility reflect a caveolar location? Trends in Cell Biology, 5, 187 - 189.
  • Lee, S.-J., Liyanage, U., Bickel, P. E., Xia, W., Lansbury, P. T. J. and Kosik, K. S., 1998, A detergent-insoluble membrane compartment contains Ab in vivo. Nature Medicine, 4, 730 - 734.
  • Li, S., Seitz, R. and Lisanti, M. P., 1996, Phosphorylation of caveolin by Src tyrosine kinases. Journal of Biological Chemistry, 271, 3863- 3868.
  • Lipardi, C., Mora, R., Colomer, V., Paladino, S., Nitsch, L., Rodriguez-Boulan, E. and Zurzolo, C., 1998, Caveolin transfection results in caveolae formation but not apical sorting of glycosylpho- sphatidylinositol (GPI)-anchored proteins in epithelial cells. Jour- nal of Cell Biology, 140, 617 - 626.
  • Lisanti, M. P., Scherer, P. E., Tang, Z. and Sargiacomo, M., 1994a, Caveolae, caveolin and caveolin-rich membrane domains: a signalling hypothesis. Trends in Cell Biology, 4, 231 - 235.
  • Lisanti, M. P., Scherer, P. E., Viugirene, J., Tang, Z., Hermanowski- Vosatka, A., Tu, Y.-H., Cook, R. F. and Sargiacomo, M., 1994b, Characterization of caveolin-rich membrane domains isolated from an endothelial-rich source: implications for human disease. Journal of Cell Biology, 126, 111 - 126.
  • Lisanti, M. P., Tang, Z., Scherer, P. E. and Sargiacomo, M., 1995, Caveolae purification and glycosylphosphatidylinositol-linked pro- tein sorting in polarized epithelia. Methods in Enzymology, 250, 655 - 668.
  • Liu, J., Oh, P., Horner, T., Rogers, R. A. and Schnitzer, J. E., 1997, Organised endothelial cell surface signal transduction in caveolae distinct from glycosylphosphatidylinositol-anchored protein micro- domains. Journal of Biological Chemistry, 272, 7211- 7222.
  • Liu, P. and Anderson, R. G. W., 1995, Compartmentalized production of ceramide at the cell surface. Journal of Biological Chemistry, 270, 27179- 27185.
  • Low, M. G., 1989, The glycosyl-phosphatidylinositol anchor of mem- brane proteins. Biochimica et Biophysica Acta, 988, 427 - 454.
  • Matko, J. and Eddin, M., 1997, Energy transfer methods for detecting molecular clusters on cell surfaces. Methods in Enzymology, 278, 444 - 462.
  • Mayor, S. and Maxfield, F. R., 1995, Insolubility and redistribution of GPI-anchored proteins at the cell surface after detergent treat- ment. Molecular Biology of the Cell, 6, 929 - 944.
  • Mayor, S., Rothberg, K. G. and Maxfield, F. R., 1994, Sequestration of GPI-anchored proteins in caveolae triggered by cross-linking. Science, 264, 1948 - 1951.
  • Melkonian, K. A., Chu, T., Tortorella, L. B. and Brown, D. A., 1995, Characterization of proteins in detergent-resistant membrane complexes from Madin-Darby canine kidney epithelial cells. Biochemistry, 34, 16161- 16170.
  • Mineo, C., James, G. L., Smart, E. J. and Anderson, R. G. W., 1996, Localization of epidermal growth factor-stimulated Ras/Raf-1 interaction to caveolae membrane. Journal of Biological Chemistry, 271, 11930- 11935.
  • Monier, S., Dietzen, D. J., Hastings, W. R., Lublin, D. M. and Kurzchalia, T. V., 1996, Oligomerisation of VIP21-caveolin in vitro is stabilised by long chain fatty acylation or cholesterol. FEBS Letters, 388, 143 - 149.
  • Monier, S., Parton, R. G., Vogel, F., Behlke, J., Henske, A. and Kurzchalia, T. V., 1995, VIP21-caveolin, a membrane protein constituent of the caveolar coat, oligomerizes in vivo and in vitro. Molecular Biology of the Cell, 6, 911 - 927.
  • Morishima-Kawashima, M. and Ihara, Y., 1998, The presence of amyloid b-protein in the detergent-insoluble membrane compart- ment of human neuroblastoma cells. Biochemistry, 37, 15247- 15253.
  • Murata, M., Peranen, J., Schreiner, R., Wieland, F., Kurzchalia, T. V. and Simons, K., 1995, VIP21/caveolin is a cholesterol-binding protein. Proceedings of the National Academy of Sciences USA, 92, 10339- 10343.
  • Okamoto, T., Schlegel, A., Scherer, P. E. and Lisanti, M. P., 1998, Caveolins, a family of scaffolding proteins for organising `pre- assembled signalling complexes’ at the plasma membrane. Journal of Biological Chemistry, 273, 5419- 5422.
  • Parkin, E. T., Hussain, I., Karran, E. H., Turner, A. J. and Hooper, N. M., 1999, Characterisation of detergent-insoluble complexes containing the familial Alzheimer’s disease-associated presenilins. Journal of Neurochemistry, 72, in press.
  • Parkin, E. T., Hussain, I., Turner, A. J. and Hooper, N. M., 1997, The amyloid precursor protein is not enriched in caveolae-like, detergent-insoluble membrane microdomains. Journal of Neuro- chemistry, 69, 2179- 2188.
  • Parolini, I., Sargiacomo, M., Lisanti, M. P. and Peschle, C., 1996, Signal transduction and glycophosphatidylinositol-linked proteins (lyn, lck, CD4, CD45, G proteins, and CD55) selectively localize in Triton- insoluble plasma membrane domains of human leukemic cell lines and normal granulocytes. Blood, 87, 3783- 3794.
  • Parton, R. G., 1996, Caveolae and caveolins. Current Opinion in Cell Biology, 8, 542 - 548.
  • Parton, R. G. and Simons, K., 1995, Digging into caveolae. Science, 269, 1398- 1399.
  • Pike, L. J. and Casey, L., 1996, Localization and turnover of phosphatidylinositol 4,5-bisphosphate in caveolin-enriched mem- brane domains. Journal of Biological Chemistry, 271, 26453- 26456.
  • Price, D. L. and Sisodia, S. S., 1998, Mutant genes in familial Alzheimer’s disease and transgenic models. Annual Review of Neuroscience, 21, 479 - 505.
  • Rietveld, A. and Simons, K., 1998, The differential miscibility of lipids as the basis for the formation of functional membrane rafts. Biochimica et Biophysica Acta, 1376, 467 - 479.
  • Rodgers, W., Crise, B. and Rose, J. K., 1994, Signals determining protein tyrosine kinase and glycosyl-phosphatidylinositol-an- chored protein targeting to a glycolipid-enriched membrane fraction. Molecular and Cellular Biology, 14, 5384- 5391.
  • Rothberg, K. G., Heuser, J. E., Donzell, W. C., Ying, Y.-S., Glenney, J. R. and Anderson, R. G. W., 1992, Caveolin, a protein component of caveolae membrane coats. Cell, 68, 673 - 682.
  • Rothberg, K. G., Ying, Y.-S., Kamen, B. A. and Anderson, R. G. W., 1990, Cholesterol controls the clustering of the glycophospholipid- anchored membrane receptor for 5-methyl-tetrahydrofolate. Journal of Cell Biology, 111, 2931- 2938.
  • Sargiacomo, M., Sudol, M., Tang, Z. and Lisanti, M. P., 1993, Signal transducing molecules and glycosyl-phosphatidylinositol-linked proteins form a caveolin-rich insoluble complex in MDCK cells. Journal of Cell Biology, 122, 789 - 807.
  • Schnitzer, J. E., Liu, J. and Oh, P., 1995a, Endothelial caveolae have the molecular transport machinery for vesicle budding, docking, and fusion including VAMP, NSF, SNAP, annexins, and GTPases. Journal of Biological Chemistry, 270, 14399- 14404.
  • Schnitzer, J. E., McIntosh, D. P., Dvorak, A. M., Liu, J. and Oh, P., 1995b, Separation of caveolae from associated microdomains of GPI-anchored proteins. Science, 269, 1435- 1439.
  • Schnitzer, J. E., Oh, P., Jacobson, B. S. and Dvorak, A. M., 1995c, Caveolae from luminal plasmalemma of rat lung endothelium: microdomains enriched in caveolin, Ca2 +,-ATPase, and inositol trisphosphate receptor. Proceedings of the National Academy of Sciences USA, 92, 1759- 1763.
  • Schnitzer, J. E., Oh, P., Pinney, E. and Allard, J., 1994, Filipin- sensitive caveolae-mediated transport in endothelium: reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. Journal of Cell Biology, 127, 1217- 1232.
  • Schroeder, R., London, E. and Brown, D., 1994, Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behaviour. Proceedings of the National Academy of Sciences USA, 91, 12130- 12134.
  • Schroeder, R. J., Ahmed, S. M., Zhu, Y., London, E. and Brown, D. A., 1998, Cholesterol and sphingolipid enhance the Triton X-100 insolubility of glycosylphosphatidylinositol-anchored proteins by promoting the formation of detergent-insoluble ordered membrane domains. Journal of Biological Chemistry, 273, 1150- 1157.
  • Shaul, P. W., Smart, E. J., Robinson, L. J., German, Z., Yuhanna, I. S., Ying, Y., Anderson, R. G. W. and Michel, T., 1996, Acylation targets endothelial nitric-oxide synthase to plasmalemmal caveo- lae. Journal of Biological Chemistry, 271, 6518- 6522.
  • Sheets, E. D., Lee, G. M. S. R. and Jacobson, K., 1997, Transient confinement of a glycosylphosphatidylinositol-anchored protein in the plasma membrane. Biochemistry, 36, 12449- 12458.
  • Simionescu, N., 1983, Cellular aspects of transcapillary exchange. Physiological Reviews, 63, 1536- 1560.
  • Simons, K. and Ikonen, E., 1997, Functional rafts in cell membranes. Nature, 387, 569 - 572.
  • Simons, K. and van Meer, G., 1988, Lipid sorting in epithelial cells. Biochemistry, 27, 6197- 6202.
  • Simons, K. and Wadinger-Ness, A., 1990, Polarised sorting in epithelia. Cell, 62, 207 - 210.
  • Simons, M., Keller, P., De Strooper, B., Beyreuther, K., Dotti, C. G. and Simons, K., 1998, Cholesterol depletion inhibits the genera- tion of b-amyloid in hippocampal neurons. Proceedings of the National Academy of Sciences USA, 95, 6460- 6464.
  • Simson, R., Yang, B., Moore, S. E., Doherty, P., Walsh, F. S. and Jacobson, K. A., 1998, Structural mosaicism on the submicron scale in the plasma membrane. Biophysical Journal, 74, 297 - 308.
  • Skibbens, J. E., Roth, M. G. and Matlin, K. S., 1989, Differential extractability of influenza virus hemagglutinin during intracellular transport in polarised epithelial cells and nonpolar fibroblasts. Journal of Cell Biology, 108, 821 - 832.
  • Smart, E. J., Foster, D. C., Ying, Y.-S., Kamen, B. A. and Anderson, R. G. W., 1994a, Protein kinase C activators inhibit receptor- mediated potocytosis by preventing internalisation of caveolae. Journal of Cell Biology, 124, 307 - 313.
  • Smart, E. J., Mineo, C. and Anderson, R. G. W., 1996a, Clustered folate receptors deliver 5-methyltetrahydrofolate to cytoplasm of MA104 cells. Journal of Cell Biology, 134, 1169- 1177.
  • Smart, E. J., Ying, Y.-S., Conrad, P. A. and Anderson, R. G. W., 1994b, Caveolin moves from caveolae to the Golgi apparatus in response to cholesterol oxidation. Journal of Cell Biology, 127, 1185- 1197.
  • Smart, E. J., Ying, Y., Donzell, W. C. and Anderson, R. G. W., 1996b, A role for caveolin in transport of cholesterol from endoplasmic reticulum to plasma membrane. Journal of Biological Chemistry, 271, 29427- 29435.
  • Smart, E. J., Ying, Y., Mineo, C. and Anderson, R. G. W., 1995, A detergent-free method for purifying caveolae membrane from tissue culture cells. Proceedings of the National Academy of Sciences USA, 92, 10104- 10108.
  • Song, K. S., Li, S., Okamoto, T., Quilliam, L. A., Sargiacomo, M. and Lisanti, M. P., 1996, Co-purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae micro- domains. Detergent-free purification of caveolae membranes. Journal of Biological Chemistry, 271, 9690- 9697.
  • Stan, R.-V., Roberts, W. G., Predescu, D., Ihida, K., Saucan, L., Ghitescu, L. and Palade, G. E., 1997, Immunoisolation and partial characterisation of endothelial plasmalemmal vesicles (caveolae). Molecular Biology of the Cell, 8, 595 - 605.
  • Stevens, V. L. and Tang, J., 1997, Fumonisin B1-induced sphingo- lipid depletion inhibits vitamin uptake via the glycosylphosphati- dylinositol-anchored folate receptor. Journal of Biological Chemistry, 272, 18020- 18025.
  • Streuli, C. H., Patel, B. and Critchley, D. R., 1981, The cholera toxin receptor ganglioside GM1 remains associated with Triton X-100 cytoskeletons of BALB/c-3T3 cells. Experimental Cell Research, 136, 247 - 254.
  • Stulnig, T. M., Berger, M., Sigmund, T., Stockinger, H., Horejsi, V. and Waldhausl, W., 1997, Signal Transduction via glycosyl phosphatidylinositol-anchored proteins in T Cells is inhibited by lowering cellular cholesterol. Journal of Biological Chemistry, 272, 19242- 19247.
  • Taraboulos, A., Scott, M., Semenov, A., Avraham, D., Laszlo, L. and Prusiner, S. B., 1995, Cholesterol depletion and modification of COOH-terminal targeting sequence of the prion protein inhibit formation of the scrapie isoform. Journal of Cell Biology, 129, 121 - 132.
  • Tienari, P. J., Ida, N., Ikonen, E., Simons, M., Weidemann, A., Multhaup, G., Masters, C. L., Dotti, C. G. and Beyreuther, K., 1997, Intracellular and secreted Alzheimer b-amyloid species are generated by distinct mechanisms in cultured hippocampal neurons. Proceedings of the National Academy of Sciences USA, 94, 4125- 4130.
  • Tran, D. J., Carpentier, J. L., Sawano, F., Gorden, P. and Orci, L., 1987, Ligands internalised through coated or non-coated invagi- nations follow a common intracellular pathway. Proceedings of the National Academy of Sciences USA, 84, 7957- 7961.
  • Varma, R. and Mayor, S., 1998, GPI-anchored proteins are organised in submicron domains at the cell surface. Nature, 394, 798 - 801.
  • Vogel, U., Sandvig, K. and van Deurs, B., 1998, Expression of caveolin-1 and polarised formation of invaginated caveolae in Caco-2 and MDCK II cells. Journal of Cell Science, 111, 825 - 832.
  • Weik, M., Patzelt, H., Zaccai, G. and Oesterhelt, D., 1998, Localisation of glycolipids in membranes by in vivo labelling and neutron diffraction. Molecular Cell, 1, 411 - 419.
  • Weimbs, T., Low, S. H., Chapin, S. J. and Mostov, K. E., 1997, Apical targeting in polarised epithelial cells: there’s more afloat than rafts. Trends in Cell Biology, 7, 393 - 399.
  • Wu, C., Butz, S., Ying, Y.-S. and Anderson, R. G. W., 1997, Tyrosine kinase receptors concentrated in caveolae-like domains from neuronal plasma membrane. Journal of Biological Chemistry, 272, 3554- 3559.
  • Xiao, Z. and Devreotes, P. N., 1997, Identification of detergent- resistant plasma membrane microdomains in dictyostelium: enrichment of signal transduction proteins. Molecular Biology of the Cell, 8, 855 - 869.
  • Xie, M. and Low, M. G., 1995, Streptolysin-O induces release of glycosylphosphatidylinositol-anchored alkaline phosphatase from ROS cells by vesiculation independently of phospholipase action. Biochemical Journal, 305, 529 - 537.
  • Yamada, E., 1955, The fine structure of the gall bladder epithelium of the mouse. Journal of Biophysical and Biochemical Cytology, 1, 445 - 458.
  • Zegers, M. M. P. and Hoekstra, D., 1998, Mechanisms and functional features of polarised membrane traffic in epithelial and hepatic cells. Biochemical Journal, 336, 257 - 269.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.