348
Views
38
CrossRef citations to date
0
Altmetric
Original Paper

The disruption of JEN1 from Candida albicans impairs the transport of lactate

, , , &
Pages 403-411 | Received 28 May 2004, Published online: 09 Jul 2009

References

  • Andrade, R. P. and Casal, M., 2001, Expression ofthe lactate permease gene JEN1 from the yeast Saccharomyces cerevisiae. Fungal Genet. <i>Biol., 32, 105 -111.
  • Ansaldi, M., Lepelletier, M. and Mejean, V., 1996, Site-specific mutagenesis by using an accurate recombinant polymerase chain reaction method. Anal. Biochem., 234, 110 -111.
  • Boeke, J. D., LaCroute, F. and Fink, G. R., 1984, A positive selection for mutants lacking orotidine-5?-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol. Gen. Genet., 197, 345 -346.
  • Bojunga, N. and Entian, K. D., 1999, Cat8p, the activator of gluconeogenic genes in Saccharomyces cerevisiae, regulates carbon source-dependent expression ofNADP-dependent cyto- solic isocitrate dehydrogenase (Idp2p) and lactate permease (Jen1p). Mol. Gen. Genet., 262, 869 -875.
  • Casal, M. and Lea˜ o, C., 1995, Utilization ofshort-chain monocar- boxylic acids by the yeast Torulaspora delbrueckii: specificity of the transport systems and their regulation. Biochim. Biophys. Acta, 1267, 122 -130.
  • Casal, M., Cardoso, H. and Lea˜ o, C., 1996, Mechanisms regulating the transport ofacetic acid in Saccharomyces cerevisiae. Micro- biology, 142, 1385 -1390.
  • Casal, M., Paiva, S., Andrade, R. P., Gancedo, C. and Lea˜ o, C., 1999, The lactate-proton symport ofSaccharomyces cerevisiae is encoded by JEN1. J. Bacteriol., 181, 2620 -2623.
  • Ca´ ssio, F., Lea˜ o, C. and van Uden, N., 1987, Transport oflactate and other short-chain monocarboxylates in the yeast Sacchar- omyces cerevisiae. Appl. <i>Environ. Microbiol., 53, 509 -513.
  • Ca´ ssio, F., Coˆ rte-Real, M. and Lea˜ o, C., 1993, Quantitative analysis ofproton movements associated with the uptake of weak carboxylic acids. The yeast Candida utilis as a model. Biochim. Biophys. Acta, 1153, 59 -66.
  • De Backer, M. D., Magee, P. T. and Pla, J., 2000, Recent developments in molecular genetics of Candida albicans. Annu. <i>Rev. Microbiol., 54, 463 -498.
  • Fonzi, W. A. and Irwin, M. Y., 1993, Isogenic strain construction and gene mapping in Candida albicans. Genetics, 134, 717 -728.
  • Gancedo, J. M., 1998, Yeast carbon catabolite repression. Microbiol. Mol. Biol. Rev., 62, 334 -361.
  • Gerami-Nejad, M., Berman, J. and Gale, C. A., 2001, Cassettes for PCR-mediated construction ofgreen, yellow, and cyan fluores- cent protein fusions in Candida albicans. Yeast, 18, 859 -864.
  • Hedges, D., Proft, M. and Entian, K. D., 1995, CAT8, a new zinc cluster-encoding gene necessary for derepression of gluconeo- genic enzymes in the yeast Saccharomyces cerevisiae. Mol. <i>Cell. Biol., 15, 1915 -1922.
  • Hoffman, C. S. and Winston, F., 1987, A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transfor- mation of Escherichia coli. Gene, 57, 267 -272.
  • Kaur, S. and Mishra, P., 1994, Differential increase in cytoplasmic pH at bud and germ tube formation in Candida albicans: studies ofa nongerminative variant. Can. J. Microbiol., 40, 720 -723.
  • Lorenz, M. C. and Fink, G. R., 2001, The glyoxylate cycle is required for fungal virulence. Nature, 412, 83 -86.
  • Lorenz, M. C. and Fink, G. R., 2002, Life and death in a macrophage: role ofthe glyoxylate cycle in virulence. Eukaryot. Cell., 1, 657 - 662.
  • Makuc, J., Paiva, S., Schauen, M., Kramer, R., Andre, B., Casal, M., Lea˜ o, C. and Boles, E., 2001, The putative monocarboxylate permeases ofthe yeast Saccharomyces cerevisiae do not transport monocarboxylic acids across the plasma membrane. Yeast, 18, 1131 -1143.
  • Moosa, M. W., Sobel, J. D., Elhalis, H., Du, W. and Akins, R. A., 2004, Fungicidal activity offluconazole against Candida albicans in a synthetic vagina-simulative medium. Antimicrob Agents Chemother., 48, 161 -167.
  • Mumberg, D., Mu¨ ller, R. and Funk, M., 1995, Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene, 156, 119 -122.
  • Negredo, A., Monteoliva, L., Gil, C., Pla, J. and Nombela, C., 1997, Cloning, analysis and one-step disruption ofthe ARG5,6 gene of Candida albicans. Microbiology, 143, 297 -302.
  • Newman, A., 1994, Analysis ofpre-mRNA splicing in yeast. In S. J. Higgins and B. D. Hames, eds RNA Processing, A Practical Approach (IRL Press, Oxford), pp. 182 -183.
  • Odds, F. C., 1985, Morphogenesis in Candida albicans. Crit. <i>Rev. Microbiol., 12, 45 -93.
  • Odds, F. C., 1988, Candida and Candidosis. (Ballie` re Tindall, London).
  • Paiva, S., Devaux, F., Barbosa, S., Jacq, C. and Casal, M., 2004, Ady2p is essential for the acetate permease activity in the yeast Saccharomyces cerevisiae. Yeast, 2, 201 -210.
  • Proft, M., Ko¨ tter, P., Hedges, D., Bojunga, N. and Entian, K. D., 1995, CAT5, a new gene necessary for derepression of gluco- neogenic enzymes in Saccharomyces cerevisiae. Embo J., 14, 6116 -6126.
  • Sambrook, J., Fritsch, E. F. and Maniatis, T., 1989, Molecular Cloning: A Laboratory Manual, 2nd edn (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY).
  • Santos, M. A., Keith, G. and Tuite, M. F., 1993, Non-standard translational events in Candida albicans mediated by an unusual seryl-tRNA with a 5?-CAG-3? (leucine) anticodon. Embo J., 12, 607 -616.
  • Soares-Silva, I., Schuller, D., Andrade, R. P., Baltazar, F., Ca´ ssio, F. and Casal, M., 2003, Functional expression ofthe lactate permease Jen1p of Saccharomyces cerevisiae in Pichia pastoris. Biochem. J., 376, 781 -787.
  • Stewart, E., Gow, N. A. and Bowen, D. V., 1988, Cytoplasmic alkalinization during germ tube formation in Candida albicans. J. <i>Gen. Microbiol., 134, 1079 -1087.
  • Stewart, E., Hawser, S. and Gow, N. A., 1989, Changes in internal and external pH accompanying growth of Candida albicans: studies ofnon-dimorphic variants. Arch. Microbiol., 151, 149 - 153.
  • Wach, A., Brachat, A., Pohlmann, R. and Philippsen, P., 1994, New heterologous modules for classical or PCR-based gene disrup- tions in Saccharomyces cerevisiae. Yeast, 10, 1793 -1808.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.