667
Views
32
CrossRef citations to date
0
Altmetric
Original

The α7 nicotinic acetylcholine receptor: Molecular modelling, electrostatics, and energetics

, , , &
Pages 151-162 | Received 18 Oct 2004, Published online: 09 Jul 2009

References

  • Allen TW, Andersen OS, Roux B. Energetics of ion conduction through the gramicidin channel. Proc Nat Acad Sci USA 2004; 101: 117–122
  • Anishkin A, Sukharev S. Water dynamics and dewetting transitions in the small mechanosensitive channel MscS. Biophys J 2004; 86: 2883–2895
  • Ashcroft FM. Ion channels and disease. Academic Press, San Diego 2000
  • Atilgan AR, Durell SR, Jernigan RL, Demirel MC, Keskin O, Bahar I. Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophys J 2001; 80: 505–515
  • Bahar I, Atilgan AR, Erman B. Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential. Fold Des 1997; 2: 173–181
  • Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Nat Acad Sci USA 2001; 98: 10037–10041
  • Beckstein O, Biggin PC, Bond PJ, Bright JN, Domene C, Grottesi A, Holyoake J, Sansom MSP. Ion channel gating: insights via molecular simulations. FEBS Lett 2003; 555: 85–90
  • Beckstein O, Biggin PC, Sansom MSP. A hydrophobic gating mechanism for nanopores. J Phys Chem B 2001; 105: 12902–12905
  • Beckstein O, Sansom MSP. The influence of geometry, surface character and flexibility on the permeation of ions and water through biological pores. Phys Biol 2004; 1: 42–52
  • Beckstein O, Tai K, Sansom MSP. Not ions alone: Barriers to ion permeation in nanopores and channels. J Amer Chem Soc 2004; 126: 14694–14695
  • Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR. Molecular dynamics with coupling to an external bath. J Chem Phys 1984; 81: 3684–3690
  • Bertrand D, Devillers-Thiéry A, Revah F, Galzi J, Hussy N, Mulle C, Bertrand S, Ballivet M, Changeux J. Unconventional pharmacology of a neuronal nicotinic receptor mutated in the channel domain. Proc Natl Acad Sci USA 1992; 89: 1261–1265
  • Bouzat C, Gumilar F, Spitzmaul G, Wang HL, Rayes D, Hansen SB, Taylor P, Sine SM. Coupling of agonist binding to channel gating in an ACh-binding protein linked to an ion channel. Nature 2004; 430: 896–900
  • Brejc K, van Dijk WJ, Klaassen RV, Schuurmans M, van der Oost J, Smit AB, Sixma TK. Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 2001; 411: 269–276
  • Celie PHN, van Rossum-Fikkert SE, van Dijk WJ, Brejc K, Smit AB, Sixma TK. Nicotine and carbamylcholine binding to nicotinic acetylcholine receptors as studied in AChBP crystal structures. Neuron 2004; 41: 907–914
  • Changeux JP, Galzi JI, Devillers-Thiéry A, Bertrand D. The functional architecture of the acetylcholine nicotinic receptor explored by affinity labelling and site-directed mutagenesis. Quart Rev Biophys 1992; 25: 395–432
  • Corringer PJ, Le Novere N, Changeux JP. Nicotinic receptors at the amino acid level. Ann Rev Pharmacol Toxicol 2000; 40: 431–458
  • Corry B. Theoretical conformation of the closed and open states of the acetylcholine receptor channel. Biochim Biophys Acta 2004; 1663: 2–5
  • Couturier S, Bertrand D, Matter J-M, Hernandez M-C, Bertrand S, Millar N, Valera S, Barkas T, Ballivet M. A neuronal nicotinic acetylcholine receptor subunit (alpha 7) is developmentally regulated and forms a homooligomeric channel blocked by alpha BTX. Neuron 1990; 5: 847–856
  • Cymes GD, Grosman C, Auerbach A. Structure of the transition state of gating in the acetylcholine receptor channel pore: A F-value analysis. Biochem 2002; 41: 5548–5555
  • Darden T, York D, Pedersen L. Particle mesh Ewald–an N.log(N) method for Ewald sums in large systems. J Chem Phys 1993; 98: 10089–10092
  • Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA. PDB2PQR: An automated pipeline for the setup, execution, and analysis of Poisson-Boltzmann electrostatics calculations. Nucl Acids Res 2004; 32: W665–667
  • Erkip A, Erman B. Dynamics of large-scale fluctuations in native proteins. Analysis based on harmonic inter-residue potentials and random external noise. Polymer 2003; 45: 641–648
  • Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. A smooth particle mesh Ewald method. J Chem Phys 1995; 103: 8577–8593
  • Fiser A, Kinh Gian Do R, Sali A. Modeling of loops in protein structures. Prot Sci 2000; 9: 1753–1773
  • Fucile S. Ca2 +  permeability of nicotinic acetylcholine receptors. Cell Calcium 2004; 35: 1–8
  • Galzi JL, Devillers-Thiery A, Hussy N, Bertrand S, Changeux JP, Bertrand D. Mutations in the channel domain of a neuronal nicotinic receptor convert ion selectivity from cationic to anionic. Nature 1992; 359: 500–505
  • Goh CS, Milburn D, Gerstein M. Conformational changes associated with protein–protein interactions. Curr Opin Struct Biol 2004; 14: 104–109
  • Grosman C, Zhou M, Auerbach A. Mapping the conformational wave of acetylcholine receptor channel gating. Nature 2000; 403: 773–776
  • Henchman RH, Wang HL, Sine SM, Taylor P, McCammon JA. Asymmetric structural motions of the homomeric a7 nicotinic receptor ligand binding domain revealed by molecular dynamics simulation. Biophys J 2003; 85: 3007–3018
  • Hermans J, Berendsen HJC, van Gunsteren WF, Postma JPM. A consistent empirical potential for water-protein interactions. Biopolymers 1984; 23: 1513–1518
  • Hille B. Ionic channels of excitable membranes. Sinauer Associates Inc, Sunderland, Mass 2001, 3rd ed.
  • Hung, A, Tai, K, Sansom, MSP. 2005. Molecular dynamics simulation of the M2 helices within the nicotinic acetylcholine receptor transmembrane domain: Insights into structure and collective motions. Biophys J, (in press)
  • Itier V, Bertrand D. Neuronal nicotinic receptors: From protein structure to function. FEBS Lett 2001; 504: 118–125
  • Karlin A. Emerging structure of the nicotinic acetylcholine receptors. Nature Rev Neurosci 2002; 3: 102–114
  • Karlin A, Akabas MH. Toward a structural basis for the function of nicotinic acetylcholine receptors and their cousins. Neuron 1995; 15: 1231–1244
  • Kash TL, Jenkins A, Kelley JC, Trudell JR, Harrison NL. Coupling of agonist binding to channel gating in the GABAA receptor. Nature 2003; 421: 272–275
  • Kelley SP, Dunlop JI, Kirkness EF, Lambert JJ, Peters JA. A cytoplasmic region determines single-channel conductance in 5-HT3 receptors. Nature 2003; 424: 321–324
  • Kim S, Chamberlain AK, Bowie JU. A model of the closed form of the nicotinic acetylcholine receptor M2 channel pore. Biophys J 2004; 87: 792–799
  • Kumar S, Bouzida D, Swendsen RH, Kollman PA, Rosenberg JM. The weighted histogram analysis method for free-energy calculations on biomolecules .1. The method. J Comp Chem 1992; 13: 1011–1021
  • Laskowski RA, Macarthur MW, Moss DS, Thornton JM. Procheck – a program to check the stereochemical quality of protein structures. J Appl Cryst 1993; 26: 283–291
  • Law RJ, Forrest LR, Ranatunga KM, La Rocca P, Tieleman DP, Sansom MSP. Structure and dynamics of the pore-lining helix of the nicotinic receptor: MD simulations in water, lipid bilayers and transbilayer bundles. Proteins: Struct Func Genet 2000; 39: 47–55
  • Law RJ, Tieleman DP, Sansom MSP. Pores formed by the nicotinic receptor M2d peptide: A molecular dynamics simulation study. Biophys J 2003; 84: 14–27
  • Le Novere N, Grutter T, Changeux JP. Models of the extracellular domain of the nicotinic receptors and of agonist- and Ca2 + -binding sites. Proc Nat Acad Sci USA 2002; 99: 3210–3215
  • Lester H. The permeation pathway of neurotransmitter-gated ion channels. Ann Rev Biophys Biomol Struct 1992; 21: 267–292
  • Lester HA, Dibas MI, Dahan DS, Leite JF, Dougherty DA. Cys-loop receptors: New twists and turns. Trends Neurosci 2004; 27: 329–336
  • Lindahl E, Hess B, van der Spoel D. GROMACS 3.0: A package for molecular simulation and trajectory analysis. J Molec Model 2001; 7: 306–317
  • Marinou M, Tzartos SJ. Identification of regions involved in the binding of a-bungarotoxin to the human a7 neuronal nicotinic acetylcholine receptor using synthetic peptides. Biochem J 2003; 372: 543–545
  • Mayer ML, Armstrong N. Structure and function of glutamate receptor ion channels. Annu Rev Physiol 2004; 66: 161–181
  • Ming D, Kong Y, Lambert MA, Huang Z, Ma J. How to describe protein motion without amino acid sequence and atomic coordinates. Proc Nat Acad Sci USA 2002; 99: 8620–8625
  • Miyazawa A, Fujiyoshi Y, Unwin N. Structure and gating mechanism of the acetylcholine receptor pore. Nature 2003; 423: 949–955
  • Montal M. Design of molecular function: channels of communication. Ann Rev Biophys Biomol Struct 1995; 24: 31–57
  • Oiki S, Danho W, Madison V, Montal M. M2d, a candidate for the structure lining the ionic channel of the nicotinic cholinergic receptor. Proc Natl Acad Sci USA 1988; 85: 8703–8707
  • Opella SJ, Marassi FM, Gesell JJ, Valente AP, Kim Y, Oblatt-Montal M, Montal M. Structures of the M2 channel-lining segments from nicotinic acetylcholine and NMDA receptors by NMR spectroscopy. Nature Struct Biol 1999; 6: 374–379
  • Panicker S, Cruz H, Arrabit C, Slesinger PA. Evidence for a centrally located gate in the pore of a serotonin-gated ion channel. J Neurosci 2002; 22: 1629–1639
  • Rashin A, Honig B. Reevaluation of the Born model of ion hydration. J Phys Chem 1985; 89: 5588
  • Reeves DC, Lummis SCR. The molecular basis of the structure and function of the 5-HT3 receptor: a model ligand-gated ion channel. Molec Membrane Biol 2002; 19: 11–26
  • Saiz L, Bandyopadhyay S, Klein ML. Effect of the pore region of a transmembrane ion channel on the physical properties of a simple membrane. J Phys Chem B 2004; 108: 2608–2613
  • Saiz L, Klein ML. Computer simulation studies of model biological membranes. Acc Chem Res 2002; 35: 482–489
  • Sali A, Blundell TL. Comparative protein modeling by satisfaction of spatial restraints. J Mol Biol 1993; 234: 779–815
  • Samson AO, Chill JH, Rodriguez E, Scherf T, Anglister J. NMR mapping and secondary structure determination of the major acetylcholine receptor a-subunit determinant interacting with a-bungarotoxin. Biochem 2001; 40: 5464–5473
  • Schofield CM, Jenkins A, Harrison NL. A highly conserved aspartic acid residue in the signature disulfide loop of the a1 subunit is a determinant of gating in the glycine receptor. J Biol Chem 2003; 278: 34079–34083
  • Smart OS, Neduvelil JG, Wang X, Wallace BA, Sansom MSP. Hole: A program for the analysis of the pore dimensions of ion channel structural models. J Mol Graph 1996; 14: 354–360
  • Unwin N. The structure of ion channels in membranes of excitable cells. Neuron 1989; 3: 665–676
  • Unwin N. Nicotinic acetylcholine receptor at 9Å resolution. J Mol Biol 1993; 229: 1101–1124
  • Unwin N. Acetylcholine receptor channel imaged in the open state. Nature 1995; 373: 37–43
  • Unwin N. The Croonian Lecture 2000. Nicotinic acetylcholine receptor and the structural basis of fast synaptic transmission. Phil Trans Roy Soc Lond B 2000; 355: 1813–1829
  • Unwin N, Miyazawa A, Fujiyoshi Y. Activation of the nicotinic acetylcholine receptor involves a switch in conformation of the a subunits. J Mol Biol 2002; 319: 1165–1176
  • Valleau JP, Torrie GM. A guide to Monte Carlo for statistical mechanics: 2. Byways. Statistical mechanics Part A: Equilibrium techniques, BJ Berne. Plenum Press, New York 1977; 164–194
  • Vriend G. WhatIf–a molecular modeling and drug design program. J Mol Graph 1990; 8: 52–56
  • Wilson GG, Karlin A. The location of the gate in the acetylcholine receptor channel. Neuron 1998; 20: 1269–1281
  • Wilson GG, Pascual JM, Brooijmans N, Murray D, Karlin A. The intrinsic electrostatic potential and the intermediate ring of charge in the acetylcholine receptor channel. J Gen Physiol 2000; 115: 93–106

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.