333
Views
18
CrossRef citations to date
0
Altmetric
Original

Structure and dynamics of the γM4 transmembrane domain of the acetylcholine receptor in lipid bilayers: insights into receptor assembly and function

, , , , &
Pages 305-315 | Received 11 Jan 2006, Published online: 09 Jul 2009

References

  • Corringer PJ, Le Novère N, Changeux JP. Nicotinic receptors at the amino acid level. Ann Rev Pharmacol Toxicol 2000; 40: 431–458
  • Barrantes FJ. Transmembrane modulation of nicotinic acetylcholine receptor function. Curr Opin Drug Disc Develop 2003; 6: 620–632
  • Barrantes FJ. Structural basis for lipid modulation of nicotinic acetylcholine receptor function. Brain Res Rev 2004; 47: 71–95
  • Marsh D, Barrantes FJ. Immobilized lipid in acetylcholine receptor-rich membranes from Torpedo marmorata. Proc Natl Acad Sci USA 1978; 75: 4329–4333
  • Blanton MP, Cohen JB. Mapping the lipid-exposed regions in the Torpedo californica nicotinic acetylcholine receptor. Biochemistry 1992; 31: 3738–3750
  • Blanton MP, Cohen JB. Identifying the lipid-protein interface of the Torpedo nicotinic acetylcholine receptor: secondary structure implications. Biochemistry 1994; 33: 2859–2872
  • Blanton MP, Xie Y, Dangott LJ, Cohen JB. The steroid promegestone is a noncompetitive antagonist of the Torpedo nicotinic acetylcholine receptor that interacts with the lipid-protein interface. Mol Pharmacol 1999; 55: 269–278
  • Miyazawa A, Fujiyoshi Y, Unwin N. Structure and gating mechanism of the acetylcholine receptor pore. Nature 2003; 423: 949–955
  • Watts A. Solid-state NMR in drug design and discovery for membrane-embedded targets. Nat Rev Drug Discov 2006; 54: 555–568
  • Xu Y, Barrantes FJ, Luo X, Chen K, Shen J, Jiang H. Conformational dynamics of the nicotinic acetylcholine receptor channel: A 35-ns molecular dynamics simulation study. J Am Chem Soc 2005; 127: 1291–1299
  • Tamamizu S, Guzman GR, Santiago J, Rojas LV, McNamee MG, Lasalde-Dominicci JA. Functional effects of periodic tryptophan substitutions in the γM4 transmembrane domain of the Torpedo californica nicotinic acetylcholine receptor. Biochemistry 2000; 39: 4666–4673
  • Lee YH, Li L, Lasalde J, Rojas L, McNamee MG, Ortiz-Miranda SI, Pappone P. Mutations in the M4 domain of Torpedo californica acetylcholine receptor dramatically alter ion channel function. Biophys J 1994; 66: 646–653
  • Bouzat C, Roccamo AM, Garbus I, Barrantes FJ. Mutations at lipid-exposed residues of the acetylcholine receptor affect its gating kinetics. Mol Pharmacol 1998; 54: 146–153
  • daCosta CJ, Ogrel AA, McCardy EA, Blanton MP, Baenziger JE. Lipid-protein interactions at the nicotinic acetylcholine receptor. A functional coupling between nicotinic receptors and phosphatidic acid-containing lipid bilayers. J Biol Chem 2002; 277: 201–208
  • de Almeida RFM, Fedorov A, Prieto M. Sphingomyelin/phosphatidylcholine/cholesterol phase diagram: boundaries and composition of lipid rafts. Biophys J 2003; 85: 2406–2416
  • Gill SC, von Hippel PH. Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem 1989; 182: 319–326
  • de Almeida RFM, Loura LMS, Prieto M, Watts A, Fedorov A, Barrantes FJ. Cholesterol modulates the organization of the γM4 transmembrane domain of the muscle nicotinic acetylcholine receptor. Biophys J 2004; 86: 2261–2272
  • Chen RF. Fluorescence quantum yields of tryptophan and tyrosine. Anal Lett 1967; 1: 35–42
  • Loura LMS, Fedorov A, Prieto M. Resonance energy transfer in a model system of membranes: Application to gel and liquid crystalline phases. Biophys J 1996; 71: 1823–1836
  • Lakowicz JR. Principles of fluorescence spectroscopy2nd ed. Kluwer/Plenum, New York 1999
  • Knutson JR, Beechem JM, Brand L. Simultaneous analysis of multiple fluorescence decay curves – a global approach. Chem Phys Lett 1983; 102: 501–507
  • Valeur B, Weber G. Resolution of the fluorescence excitation spectrum of indole into the 1La and 1Lb excitation bands. Photochem Photobiol 1977; 25: 441–444
  • Dutt GB. Rotational diffusion of nondipolar probes in Triton X-100 micelles: Role of specific interactions and micelle size on probe dynamics. J Phys Chem B 2002; 106: 7398–7404
  • McClare CWF. An accurate and convenient organic phosphorus assay. Anal Biochem 1971; 39: 527–530
  • Deeg R, Ziegenhorn J. Kinetic enzymathic method for automated determination of total cholesterol in serum. Clin Chem 1983; 29: 1798–1802
  • Antollini SS, Xu Y, Jiang H, Barrantes FJ. Fluorescence and molecular dynamics studies of the acetylcholine receptor γM4 transmembrane peptide in reconstituted systems. Mol Membr Biol 2005; 22: 471–483
  • Chattopadhyay A, Raghuraman H. Application of fluorescence spectroscopy to membrane protein structure and dynamics. Curr Sci 2004; 87: 175–180
  • Itoh KI, Azumi T. Shift of emission band upon excitation at long wavelength absorption-edge 2. importance of solute-solvent interaction and solvent reorientation relaxation process. J Chem Phys 1975; 62: 3431–3438
  • de Almeida RFM, Loura LMS, Prieto M. Application of fluorescence to understand the interaction of peptides with binary lipid membranes. Rev Fluorescence 2005; 2: 271–323
  • Ridder ANJA, Morein S, Stam JG, Kuhn A, de Kruijff B, Killian JA. Analysis of the role of interfacial tryptophan residues in controlling the topology of membrane proteins. Biochemistry 2000; 39: 6521–6528
  • Chen Y, Barkley MD. Toward understanding tryptophan fluorescence in proteins. Biochemistry 1998; 37: 9976–9982
  • Sillen A, Engelborghs Y. The correct use of ‘average’ fluorescence parameters. Photochem Photobiol 1998; 67: 475–486
  • Dahms TES, Szabo AG. Probing local secondary structure by fluorescence: Time-resolved and circular dichroism studies of highly purified neurotoxins. Biophys J 1995; 69: 569–576
  • Kingsman SM, Kingsman AJ. The regulation of human immunodeficiency virus type-1 gene expression. Eur J Biochem 1996; 240: 491–507
  • Larsen OFA, van Stokkum IHM, Pandit A, van Grondelle R, van Amerongen H. Ultrafast polarized fluorescence measurements on tryptophan and a tryptophan-containing peptide. J Phys Chem B 2003; 107: 3080–3085
  • Ladokhin AS. On the interpretation of decay-associated fluorescence spectra in proteins. Biopolymers Cell 2001; 17: 221
  • Rinia HA, Boots JWP, Kik RA, Sneel MME, Demel RA, Killian JA, van der Erden JPJM, de Kruijff B. Domain formation in phosphatidylcholine bilayers containing transmembrane peptides: Specific effects of flanking residues. Biochemistry 2002; 41: 2814–2824
  • de Foresta B, Tortech L, Vincent M, Gallay J. Location and dynamics of tryptophan in transmembrane alpha-helix peptides: A fluorescence and circular dichroism study. Eur Biophys J 2002; 31: 185–198
  • Vogel H, Nilsson L, Rigler R, Vogues KL, Jung G. Structural fluctuations of a helical polypeptide traversing a lipid bilayer. Proc Natl Acad Sci USA 1988; 85: 5067–5071
  • Sparr E, Ganchev DN, Snel MME, Ridder ANJA, Kroon-Batenburg LMJ, Chupin V, Rijkers DTS, Killian JA, de Kruijff B. Molecular organization in striated domains induced by transmembrane γ-helical peptides in dipalmitoyl phosphatidylcholine bilayers. Biochemistry 2005; 44: 2–10
  • Lipari G, Szabo A. Effect of vibrational motion on fluorescence depolarization and nuclear magnetic resonance relaxation in macromolecules and membranes. Biophys J 1980; 30: 489–506
  • Kinosita K, Jr, Kawato S, Ikegami A. A theory of fluorescence polarization decay in membranes. Biophys J 1977; 20: 289–305
  • Poveda JA, Prieto M, Encinar JA, Gonzalez-Ros JM, Mateo CR. Intrinsic tyrosine fluorescence as a tool to study the interaction of the Shaker B ‘Ball’ peptide with anionic membranes. Biochemistry 2003; 42: 7124–7132
  • Bowie JU. Helix packing in membrane proteins. J Mol Biol 1997; 272: 780–789
  • de Planque MR, Kruijtzer JA, Liskamp RM, Marsh D, Greathouse DV, Koeppe 2nd RE, de Kruijff B, Killian JA. Different membrane anchoring positions of tryptophan and lysine in synthetic transmembrane alpha-helical peptides. J Biol Chem 1999; 274: 20839–20846
  • Williamson PTF, Zandomeneghi G, Barrantes FJ, Watts A, Meier BH. Structural and dynamic studies of the γ-M4 trans-membrane domain of the nicotinic acetylcholine receptor. Mol Membr Biol 2005; 22: 485–496
  • Lakowicz JR. On spectral relaxation in proteins. Photochem Photobiol 2000; 72: 421
  • Pandit A, Larsen OFA, van Stokkum IHM, van Grondelle R, Kraayenhof R, van Amerongen H. Ultrafast polarized fluorescence measurements on monomeric and self-associated melittin. J Phys Chem B 2003; 107: 3086–3090
  • Toptygin D, Savtchenko RS, Meadow ND, Brand L. Homogeneous spectrally- and time-resolved fluorescence emission from single-tryptophan mutants of IIAGlc Protein. J Phys Chem B 2001; 105: 2043–2055
  • Lundbaek JA, Anderson OS, Werge T, Nielsen C. Cholesterol-induced protein sorting: An analysis of energetic feasibility. Biophys J 2003; 84: 2080–2089
  • Vidal A, McIntosh TJ. Transbilayer peptide sorting between raft and nonraft bilayers: Comparisons of detergent extraction and confocal microscopy. Biophys J 2005; 89: 1102–1108
  • Poveda JA, Encinar JA, Fernandez AM, Mateo CR, Ferragut JA, Gonzalez-Ros JM. Segregation of phosphatidic acid-rich domains in reconstituted acetylcholine receptor membranes. Biochemistry 2002; 41: 12253–12262
  • Noda M, Takahashi H, Tanabe T, Toyosato M, Kikyotani S, Furutani Y, Hirose T, Takashima H, Inayama S, Miyata T, Numa S. Structural homology of Torpedo californica acetylcholine receptor subunits. Nature 1983; 302: 528–532
  • Wenz J, Barrantes FJ. Nicotinic acetylcholine receptor induces lateral segregation of phosphatidic acid and phosphatidylcholine in reconstituted membranes. Biochemistry 2005; 44: 398–410

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.