939
Views
40
CrossRef citations to date
0
Altmetric
Original

Lysenin-His, a sphingomyelin-recognizing toxin, requires tryptophan 20 for cation-selective channel assembly but not for membrane binding

, , , , , , , & show all
Pages 121-134 | Received 07 Apr 2006, Published online: 09 Jul 2009

References

  • Lange Y, Swaisgood MH, Ramos BV, Steck TL. Plasma membranes contain half the phospholipid and 90% of the cholesterol and sphingomyelin in cultured human fibroblasts. J Biol Chem 1989; 264: 3786–3793
  • Koval M, Pagano RE. Intracellular transport and metabolism of sphingomyelin. Biochim Biophys Acta 1991; 1082: 113–125
  • Zorec R, Tester M, Macek P, Mason WT. Cytotoxicity of equinatoxin II from the sea anemone Actinia equina involves ion channel formation and an increase in intracellular calcium activity. J Membr Biol 1990; 118: 243–249
  • Bonev BB, Lam YH, Anderluh G, Watts A, Norton RS, Separovic F. Effects of the eukaryotic pore-forming cytolysin equinatoxin II on lipid membranes and the role of sphingomyelin. Biophys J 2003; 84: 2382–2392
  • Geisse NA., Cover TL, Henderson RM, Edwardson JM. Targeting of Helicobacter pylori vacuolating toxin to lipid raft membrane domains analyzed by atomic force microscopy. Biochem J 2004; 381: 911–917
  • Sepcic K, Berne S, Rebolj K, Batista U, Plemenitas A, Sentjurc M, Macek P. Ostreolysin, a pore-forming protein from the oyster mushroom, interacts specifically with membrane cholesterol-rich lipid domains. FEBS Lett 2004; 575: 81–85
  • Tomita T, Noguchi K, Mimuro H, Ukaji F, Ito K, Sugawara-Tomita N, Hashimoto Y. Ostreolysin, a pore-forming protein from the oyster mushroom, interacts specifically with membrane cholesterol-rich lipid domains. J Biol Chem 2004; 279: 26975–26982
  • Zitzer A, Zitzer O, Bhakdi S, Palmer M. Oligomerization of Vibrio cholerae cytolysin yields a pentameric pore and has a dual specificity for cholesterol and sphingolipids in the target membrane. J Biol Chem 1999; 274: 1375–1380
  • Brown DA, London E. Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 1998; 14: 111–136
  • Horejsi V. The roles of membrane microdomains (rafts) in T cell activation. Immunol Rev 2003; 191: 148–164
  • Rajendran L, Simons K. Lipid rafts and membrane dynamics. J Cell Sci 2005; 118: 1099–1102
  • Waheed AA, Shimada Y, Heijnen H F, Nakamura M, Inomata M, Hayashi M, Iwashita S, Slot JW, Ohno-Iwashita Y. Selective binding of perfringolysin O derivative to cholesterol-rich membrane microdomains (rafts). Proc Natl Acad Sci USA 2001; 98: 4926–4931
  • Cooper EL, Kauschke E, Cossarizza A. Digging for innate immunity since Darwin and Metchnikoff. BioEssays 2002; 24: 319–333
  • Yamaji A, Sekizawa Y, Emoto K, Sakuraba H, Inoue K, Kobayashi H, Umeda M. Lysenin, a novel sphingomyelin-specific binding protein. J Biol Chem 1998; 73: 5300–5306
  • Yamaji-Hasegawa A, Makino A, Baba T, Senoh Y, Kimura-Suda H, Sato SB, Terada N, Ohno S, Kiyokawa E, Umeda M, Kobayashi T. Oligomerization and pore formation of a sphingomyelin-specific toxin, lysenin. J Biol Chem 2003; 278: 22762–22770
  • Ishitsuka R, Yamaji-Hasegawa A, Makino A, Hirabayashi Y, Kobayashi T. A lipid-specific toxin reveals heterogeneity of sphingomyelin-containing membranes. Biophys J 2004; 86: 296–307
  • Abdel-Shakor AB, Kwiatkowska K, Sobota A. Cell surface ceramide generation precedes and controls FcγRII clustering and phosphorylation in rafts. J Biol Chem 2004; 279: 36778–36787
  • Gouaux E. Channel-forming toxins: tales of transformation. Curr Opin Struct Biol 1997; 7: 566–573
  • Hanada K, Hara T, Fukasawa M, Yamaji A, Umeda M, Nishijima M. Mammalian cell mutants resistant to a sphingomyelin-directed cytolysin. Genetic and biochemical evidence for complex formation of the LCB1 protein with the LCB2 protein for serine palmitoyltransferase. J Biol Chem 1998; 273: 33787–33794
  • Kobayashi H, Sekizawa Y, Aizu M, Umeda M. Lethal and non-lethal responses of spermatozoa from a wide variety of vertebrates and invertebrates to lysenin, a protein from the coelomic fluid of the earthworm Eisenia foetida. J Exp Zool 2000; 286: 538–549
  • Sekizawa Y, Hagiwara K, Nakajima T, Kobayashi H. A novel protein, lysenin, that causes contraction of the isolated rat aorta: its purification from the coelomic fluid of the earthworm, Eisenia foetida. Biomed Res 1996; 17: 197–203
  • Sekizawa Y, Kubo T, Kobayashi H, Nakajima T, Natori S. Molecular cloning of cDNA for lysenin, a novel protein in the earthworm Eisenia foetida that causes contraction of rat vascular smooth muscle. Gene 1997; 191: 97–102
  • Maniatis T, Fritsch EF, Sambrook J. Preparation of reagents and buffers used in molecular cloning. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY 1982; B27
  • Dybczyński I, Płucienniczak A. A protocol for DNA fragment extraction from polyacrylamide gels. Biotechniques 1988; 6: 924–926
  • Thomas C L, Steel J, Prestwich GD, Schiavo G. Generation of phosphatidylinositol-specific antibodies and their characterization. Biochem Soc Trans 1999; 4: 648–652
  • Taki T, Ishikawa D. TLC blotting: application to microscale analysis of lipids and as a new approach to lipid-protein interaction. Anal Biochem 1997; 251: 135–143
  • Kwiatkowska K, Frey J, Sobota A. Phosphorylation of FcγRIIA is required for the receptor-induced actin rearrangement and capping: the role of membrane rafts. J Cell Sci 2003; 116: 537–550
  • Hordejuk R, Lobanov NA, Kicińska A, Szewczyk A, Dołowy K. pH modulation of large conductance potassium channel from adrenal chromaffin granules Mol Membr Biol 2004; 21: 307–313
  • Kiyokawa E, Makino A, Ishii K, Otsuka N, Yamaji-Hasegawa A, Kobayashi T. Recognition of sphingomyelin by lysenin and lysenin-related proteins. Biochemistry 2004; 43: 9766–9773
  • Barenholz Y, Gatt S. Sphingomyelin: metabolism, chemical synthesis, chemical and physical properties. In: Hawthorne JN Ansell GB, editors. Phospholipids. Amsterdam: Elsevier/North-Holland Biomedical Press; 1982. pp 129–177.
  • Kiyokawa E, Baba T, Otsuka N, Makino A, Ohno S, Kobayashi T. Spatial and functional heterogeneity of sphingolipid-rich membrane domains. J Biol Chem 2005; 280: 24072–24084
  • Valeva A, Weisser A, Walker B, Kehoe M, Bayley H, Bhakdi S, Palmer M. Molecular architecture of a toxin pore: a 15-residue sequence lines the transmembrane channel of staphylococcal alpha-toxin. EMBO J 1996; 15: 1857–1864
  • Hotze EM, Heuck AP, Czajkowsky DM, Shao Z, Johnson AE, Tweten RK. Monomer-monomer interactions drive the prepore to pore conversion of a β-barrel-forming cholesterol-dependent cytolysin. J Biol Chem 2002; 277: 11597–11605
  • Montoya M, Gouaux E. β-Barrel membrane protein folding and structure viewed through the lens of α-hemolysin. Biochim Biophys Acta 2003; 1609: 19–27
  • Sliwinska-Korell A, Engelhardt H, Kampka M, Lutz F. Oligomerization and structural changes of the pore-forming Pseudomonas aeruginosa cytotoxin. Eur J Biochem 1999; 265: 221–230
  • Shai Y, Oren Z. From “carpet” mechanism to de-novo designed diastereomeric cell-selective antimicrobial peptides. Peptides 2001; 22: 629–1641
  • Brogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?. Nat Rev Microbiol 2005; 3: 238–250
  • Dathe M, Wieprecht T. Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. Biochim Biophys Acta 1999; 1462: 71–87
  • Abel-Shakor AB, Czuryło EA, Sobota A. Lysenin, a unique sphingomyelin-binding protein. FEBS Lett 2003; 542: 1–6
  • Hong Q, Gutierrez-Aguirre I, Barlic A, Malovrh P, Kristan K, Podlesek Z, Macek P, Turk D, Gonzalez-Manas JM, Lakey JH, Anderluh G. Two-step membrane binding by equinatoxin II, a pore-forming toxin from the sea anemone, involves an exposed aromatic cluster and a flexible helix. J Biol Chem 2002; 277: 41916–41924
  • Anderluh G, Dalla Serra M, Viero G, Guella G, Macek P, Menestrina G. Pore formation by equinatoxin II, a eukaryotic protein toxin, occurs by induction of nonlamellar lipid structures. J Biol Chem 2003; 278: 45216–45223
  • Kristan K, Podlesek Z, Hojnik V, Gutierrez-Aguirre I, Guncar G, Turk D, Gonzalez-Manas JM, Lakey JH, Macek P, Anderluh G. Pore formation by equinatoxin, a eukaryotic pore-forming toxin, requires a flexible N-terminal region and a stable β-sandwich. J Biol Chem 2004; 279: 46509–46517
  • Sanchez-Magraner L, Cortajarena AL, Goni FM, Ostolaza H. Membrane insertion of Escherichia coli α-hemolysin is independent from membrane lysis. J Biol Chem 2006; 281: 5461–5467
  • Kagan BL, Selsted ME, Ganz T, Lehrer RI. Antimicrobial defensin peptides form voltage-dependent ion-permeable channels in planar lipid bilayer membranes. Proc Natl Acad Sci USA 1990; 87: 210–214
  • Falla TJ, Karunaratne DN, Hancock RE. Mode of action of the antimicrobial peptide indolicidin. J Biol Chem 1996; 271: 19298–19303
  • Laohachai KN, Bahadi R, Hardo MB, Hardo PG, Kourie JI. The role of bacterial and non-bacterial toxins in the induction of changes in membrane transport: implications for diarrhea. Toxiconology 2003; 42: 687–707
  • Bruhn H, Winkelmann J, Anderson C, Andra J, Leippe M. Dissection of the mechanism of cytolytic and antibacterial activity of lysenin, a defense protein of the annelid Eisenia fetida. Dev Comp Immunol 2006; 30: 597–606

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.