373
Views
11
CrossRef citations to date
0
Altmetric
Original Article

Lipid-destabilizing properties of the hydrophobic helices H8 and H9 from colicin E1

, , , , , , & show all
Pages 419-430 | Received 26 Jan 2006, Published online: 09 Jul 2009

References

  • Lazdunski C J. Pore-forming colicins: synthesis, extracellular release, mode of action, immunity. Biochimie 1988; 70: 1291–1296
  • Baty D, Frenette M, Lloube R, Geli V, Howard S P, Pattus F, Lazdunski C. Functional domains of colicin A. Mol Microbiol 1988; 2: 807–811
  • Zakharov SD, Cramer WA. Colicin crystal structures: pathways and mechanisms for colicin insertion into membranes. Biochim Biophys Acta 2002; 1565: 333–346
  • Bullock JO, Cohen FS, Dankert JR, Cramer WA. Comparison of the macroscopic and single channel conductance properties of colicin E1 and its COOH-terminal tryptic peptide. J Biol Chem 1983; 258: 9908–9912
  • Zakharov SD, Lindeberg M, Cramer WA. Kinetic description of structural changes linked to membrane import of the colicin E1 channel protein. Biochemistry 1999; 38: 11325–11332
  • Cramer WA, Dankert JR, Uratani. The membrane channel-forming bacteriocidal protein, colicin El. Biochim Biophys Acta 1983; 737: 173–193
  • Cleveland MV, Slatin S, Finkelstein A, Levinthal C. Structure-function relationships for a voltage-dependent ion channel: properties of COOH-terminal fragments of colicin E1. Proc Natl Acad Sci USA 1983; 80: 3706–3710
  • Zakharov SD, Lindeberg M, Griko Y, Salamon Z, Tollin G, Prendergast FG, Cramer WA. Membrane-bound state of the colicin E1 channel domain as an extended two-dimensional helical array. Proc Natl Acad Sci USA 1998; 95: 4282–4287
  • Zakharov SD, Cramer WA. Insertion intermediates of pore-forming colicins in membrane two-dimensional space. Biochimie 2002; 84: 465–475
  • Kim Y, Valentine K, Opella SJ, Schendel SL, Cramer WA. Solid-state NMR studies of the membrane-bound closed state of the colicin E1 channel domain in lipid bilayers. Protein Sci 1998; 7: 342–348
  • Elkins P, Bunker A, Cramer WA, Stauffacher CV. A mechanism for toxin insertion into membranes is suggested by the crystal structure of the channel-forming domain of colicin E1. Structure 1997; 5: 443–458
  • Tory MC, Merrill AR. Adventures in membrane protein topology – a study of the membrane-bound state of colicin E1. J Biological Chem 1999; 274: 24539–24549
  • Tory MC, Merrill AR. Determination of membrane protein topology by red-edge excitation shift analysis: application to the membrane-bound colicin E1 channel peptide. Biochimica et Biophysica Acta-Biomembranes 2002; 1564: 435–448
  • Sobko AA, Kotova EA, Antonenko YN, Zakharov SD, Cramer WA. Effect of lipids with different spontaneous curvature on the channel activity of colicin E1: evidence in favor of a toroidal pore. FEBS Letters 2004; 576: 205–210
  • Brasseur R. Tilted peptides: a motif for membrane destabilization (hypothesis). Molec Membrane Biol 2000; 17: 31–40
  • Brasseur R, Pillot T, Lins L, Vandekerckhove J, Rosseneu M. Peptides in membranes: tipping the balance of membrane stability. Trends Biochem Sci 1997; 22: 167–171
  • Horth M, Lambrecht B, Khim MCL, Bex F, Thiriart C, Ruysschaert JM, Burny A, Brasseur R. Theoretical and functional-analysis of the Siv fusion peptide. Embo J 1991; 10: 2747–2755
  • Rahman M, Lins L, Thomas-Soumarmon A, Brasseur R. Are amphipathic asymmetric peptides ubiquitous structures for membrane destabilisation?. J Molec Modeling 1997; 3: 203–215
  • Lins L, Charloteaux B, Thomas A, Brasseur R. Computational study of lipid-destabilizing protein fragments: towards a comprehensive view of tilted peptides. Proteins-Structure Function Genetics 2001; 44: 435–447
  • Talmud P, Lins L, Brasseur R. Prediction of signal peptide functional properties: a study of the orientation and angle of insertion of yeast invertase mutants and human apolipoprotein B signal peptide variants. Protein Engineering 1996; 9: 317–321
  • Lambert G, Decout A, Vanloo B, Rouy D, Duverger N, Kalopissis A, Vadekerckhove J, Chambaz J, Brasseur R, Rosseneu M. The C-terminal helix of human apolipoprotein AII promotes the fusion of unilamellar liposomes and displaces apolipoprotein AI from high-density lipoproteins. Eur J Biochem 1998; 253: 328–338
  • Martin I, Dubois MC, Defrise-Quertain F, Saermark T, Burny A, Brasseur R, Ruysschaert JM. Correlation between fusogenicity of synthetic modified peptides corresponding to the NH2-terminal extremity of Simian immunodeficiency virus Gp32 and their mode of insertion into the lipid bilayer – an infrared spectroscopy study. J Virol 1994; 68: 1139–1148
  • Martin I, Defrise-Quertain F, Mandieau V, Nielsen NM, Saermark T, Burny A, Brasseur R, Ruysschaert JM, Vandenbranden M. Fusogenic activity of Siv (Simian Immunodeficiency Virus) peptides located in the Gp32 NH2 terminal domain. Biochem Biophys Res Communic 1991; 175: 872–879
  • Perez-Mendez O, Vanloo B, Decout A, Goethals M, Peelman F, Vandekerckhove J, Brasseur R, Rosseneu M. Contribution of the hydrophobicity gradient of an amphipathic peptide to its mode of association with lipids. Eur J Biochem 1998; 256: 570–579
  • Lins L, Flore C, Chapelle L, Talmud PJ, Thomas A, Brasseur R. Lipid-interacting properties of the N-terminal domain of human apolipoprotein C-III. Protein Engineering 2002; 15: 513–520
  • Bradshaw JP, Darkes MJ, Harroun TA, Katsaras J, Epand RM. Oblique membrane insertion of viral fusion peptide probed by neutron diffraction. Biochemistry 2000; 39: 6581–6585
  • Han X, Bushweller JH, Cafiso DS, Tamm LK. Membrane structure and fusion-triggering conformational change of the fusion domain from influenza hemagglutinin. Nat Struct Biol 2001; 8: 715–720
  • Ducarme P, Rahman M, Brasseur R. IMPALA: a simple restraint field to simulate the biological membrane in molecular structure studies. Proteins-Structure Function Bioinformatics 1998; 30: 357–371
  • Vogt B, Ducarme P, Schinzel S, Brasseur R, Bechinger B. The topology of lysine-containing amphipathic peptides in bilayers by circular dichroism, solid-state NMR, and molecular modeling. Biophysical J 2000; 79: 2644–2656
  • Lins L, Charloteaux B, Heinen C, Thomas A, Brasseur R. De novo’ design of peptides with specific lipid-binding properties. Biophysical J 2006; 90: 470–479
  • Brasseur R. Simulating the folding of small proteins by use of the local minimum energy and the free solvation energy yields native-like structures. J Molec Graphics 1995; 13: 312–322
  • Mayer LD, Hope MJ, Cullis PR. Vesicles of variable sizes produced by a rapid extrusion procedure. Biochim Biophys Acta 1986; 858: 161–168
  • Mrsny RJ, Volwerk JJ, Griffith OH. A simplified procedure for lipid phosphorus analysis shows that digestion rates vary with phospholipid structure. Chem Phys Lipids 1986; 39: 185–191
  • Ellens H, Bentz J, Szoka FC. H + - and Ca2 + -induced fusion and destabilization of liposomes. Biochemistry 1985; 24: 3099–3106
  • Kendall DA, MacDonald RC. A fluorescence assay to monitor vesicle fusion and lysis. J Biol Chem 1982; 257: 13892–13895
  • Goormaghtigh E, Cabiaux V, Ruysschaert JM. Secondary structure and dosage of soluble and membrane proteins by attenuated total reflection Fourier-transform infrared spectroscopy on hydrated films. Eur J Biochem 1990; 193: 409–420
  • Goormaghtigh E, Raussens V, Ruysschaert JM. Attenuated total reflection infrared spectroscopy of proteins and lipids in biological membranes. Biochim Biophys Acta 1999; 1422: 105–185
  • Giocondi MC, Vié V, Lesniewska E, Milhiet PE, Zinke-Allmang M, Le Grimellec C. Phase topology and growth of single domains in lipid bilayers. Langmuir 2001; 17: 1653–1659
  • Reviakine I, Brisson A. Formation of supported phospholipid bilayers from unilamellar vesicles investigated by atomic force microscopy. Langmuir 2000; 16: 1806–1815
  • Milhiet PE, Giocondi MC, Baghdadi O, Ronzon F, Le Grimellec C, Roux B. AFM detection of GPI protein insertion into DOPC/DPPC model membranes. Single Molec 2002; 3: 135–140
  • Berquand A, Mingeot-Leclercq MP, Dufrene YF. Real-time imaging of drug-membrane interactions by atomic force microscopy. Biochim Biophys Acta 2004; 1664: 198–205
  • Dufrene YF, Barger WR, Green JB, Lee GU. Nanometer-scale surface properties of mixed phospholipid monolayers and bilayers. Langmuir 1997; 13: 4779–4784
  • El Kirat K, Lins L, Brasseur R, Dufrene YF. Fusogenic tilted peptides induce nanoscale holes in supported phosphatidylcholine bilayers. Langmuir 2005; 21: 3116–3121
  • Rinia HA, Boots W, Rijkers DT, Kik RA, Snel MM, Demel RA, Killian JA, van der Eerden JP, de Kruijff B. Domain formation in phosphatidylcholine bilayers containing transmembrane peptides: specific effects of flanking residues. Biochemistry 2002; 41: 2814–2824
  • Adam B, Lins L, Stroobant V, Thomas A, Brasseur R. Distribution of hydrophobic residues is crucial for the fusogenic properties of the Ebola virus Gp2 fusion peptide. J Virol 2004; 78: 2131–2136
  • Tory MC, Merrill AR. Acrylamide quenching of colicin E1 channel peptide intrinsic fluorescence to probe the membrane-topology of the closed channel. Biophysical J 1999; 76: A120–A120
  • Sobko AA, Vigasina MA, Rokitskaya TI, Kotova EA, Zakharov SD, Cramer WA, Antonenko YN. Chemical and photochemical modification of colicin E1 and gramicidin a in bilayer lipid membranes. J Membrane Biol 2004; 199: 51–62
  • Zakharov SD, Kotova EA, Antonenko YN, Cramer WA. On the role of lipid in colicin pore formation. Biochim Biophys Acta 2004; 1666: 239–249
  • Chernomordik LV, Leikina E, Frolov V, Bronk P, Zimmerberg J. An early stage of membrane fusion mediated by the low pH conformation of influenza hemagglutinin depends upon membrane lipids. J Cell Biol 1997; 136: 81–93
  • Yang L, Huang HW. Observation of a membrane fusion intermediate structure. Science 2002; 297: 1877–1879
  • Epand RF, Martinou JC, Montessuit S, Epand RM, Yip CM. Direct evidence for membrane pore formation by the apoptotic protein Bax. Biochem Biophys Res Commun 2002; 298: 744–749
  • Basanez G, Sharpe JC, Galanis J, Brandt TB, Hardwick JM, Zimmerberg J. Bax-type apoptotic proteins porate pure lipid bilayers through a mechanism sensitive to intrinsic monolayer curvature. J Biol Chem 2002; 277: 49360–49365

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.