925
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

In vitro effect of endothelin-1 and nifedipine on pulmonary vascular contraction of pulmonary hypertensive and non-pulmonary hypertensive chickens

, &
Pages 256-262 | Received 20 Sep 2015, Accepted 22 Nov 2015, Published online: 22 Mar 2016

References

  • Abramowitz J, Birnbaumer L. 2009. Physiology and pathophysiology of canonical transient receptor potential channels. FASEB J. 23:297–328. doi: 10.1096/fj.08-119495
  • Adnot S, Raffestin B, Eddhahibi S, Braquet P, Chabrier P. 1991. Loss of endothelium-dependent relaxant activity in the pulmonary circulation of rats exposed to chronic hypoxia. J Clin Invest. 87:155–162. doi: 10.1172/JCI114965
  • Alexander AF, JENSEN R. 1959. Gross cardiac changes in cattle with high mountain disease and in experimental cattle maintained at high altitudes. Am J Vet Res. 20:680–689.
  • Al-jiffry BO, Meedeniya ACB, Chen JW, Toouli J, Saccone GTP. 2001. Endothelin-1 induces contraction of human and Australian possum gallbladder in vitro. Regul Peptides. 102:31–39. doi: 10.1016/S0167-0115(01)00302-0
  • Álvarez D, Hernández A, Orozco C. 2012. Endothelial hyperpolarizing factor increases acetylcholine-induced vasodilatation in pulmonary hypertensive broilers arterial rings. Res Vet Sci. 92:1–6. doi: 10.1016/j.rvsc.2011.02.004
  • Areiza RA, Rivas PC, Hernández A. 2011. A quantitative study of the pulmonary vascular bed and pulmonary weight: Body weight ratio in chickens exposed to relative normoxia and chronic hypobaric hypoxia. J Poult Sci. 48:267–274. doi: 10.2141/jpsa.011030
  • Barman SA. 2007. Vasoconstrictor effect of endothelin-1 on hypertensive pulmonary arterial smooth muscle involves rho-kinase and protein kinase C. Am J Physiol Lung Cell Mol Physiol. 293:L472–L479. doi: 10.1152/ajplung.00101.2006
  • Bialecki RA, Fisher CS, Murdoch WW, Barthlow HG, Stow RB, Mallamaci M, Rumsey W. 1998. Hypoxic exposure time dependently modulates endothelin induced contraction of pulmonary artery smooth muscle. Am J Physiol. 274 (Lung Cell. Mol. Physiol. 18):L552–L559.
  • Broiler Management Guide. 2008. Cobb 500. Cobb.Vantress.com.
  • Channick RN, Sitbon O, Barst RJ, Manes A, Rubin LJ. 2004. Endothelin receptor antagonists in pulmonary arterial hypertension. J Am Coll Cardiol. 43:S62–S67. doi: 10.1016/j.jacc.2004.02.042
  • De Carvalho MH, Nigro DR, Barbeiro HV, De Oliveira MA, De Nucci G, Fortes ZB. 1990. Comparison of the effect of endothelin on microvessels and macrovessels in Goldblatt II and deoxycorticosterone acetate-salt hypertensive rats. Hypertension. 15:I68–I68. doi: 10.1161/01.HYP.15.2_Suppl.I68
  • Dupuis J, Jazmin JF, Prie S, Cernacek P. 2000. Importance of local production of endothelin-1 and the of the ETB receptor in the regulation of pulmonary vascular tone. Pulm Pharmacol Ther. 13:135–140. doi: 10.1006/pupt.2000.0242
  • Giaid A, Yanagisawa M, Langleben D, Michel RP, Levy R, Shennib H, Kimura S, Masaki T, Duguid WP, Stewart DJ. 1993. Expression of endothelin-1 in the lungs of patients with pulmonary hypertension. N Engl J Med. 328:1732–1739. doi: 10.1056/NEJM199306173282402
  • Godfraind T. 1983. Actions of nifedipine on calcium fluxes and contraction in isolated rat arteries. JPET. 224:443–450.
  • Gómez AP, Moreno MJ, Iglesias A, Coral PX, Hernández A. 2007. Endothelin 1, its endothelin type A receptor, connective tissue growth factor, platelet-derived growth factor, and adrenomedullin expresión in lungs of pulmonary hypertensive and nonhypertensive chickens. Poult Sci. 86:909–916. doi: 10.1093/ps/86.5.909
  • Gosling M, Poll C, Li S. 2005. TRP channels in airway smooth muscle as therapeutic targets. Naunyn-Schmiedebergs Arch Pharmacol. 371:277–284. doi: 10.1007/s00210-005-1058-2
  • Goto K, Kasuya Y, Matsuki N, Takuwa Y, Kurihara H, Ishikawa T, Kimura S, Yanagisawa M, Masaki T. 1989. Endothelin activates the dihydropyridine-sensitive, voltage-dependent Ca2+ channel in vascular smooth muscle. Proc Natl Acad Sci USA. 86:3915–3918. doi: 10.1073/pnas.86.10.3915
  • Gray GA, Loffler BM, Clozel M. 1994. Characterization of endothelin receptors mediating contraction of rabbit saphenous vein. Am J Physiol. 266:H959–966.
  • Hall J, Jones TH, Channer KS, Jones RD. 2009. Mechanisms of agonist-induced constriction in isolated human pulmonary arteries. Vasc Pharmacol. 51:8–12. doi: 10.1016/j.vph.2009.01.007
  • Inagami T, Mitsuhide N, Hoover R. 1995. Endothelium as an endocrine organ. Annu Rev Physiol 57:171–189. doi: 10.1146/annurev.ph.57.030195.001131
  • Itoh H, Yokochi A, Yamauchi-Kohno R, Maruyama K. 1999. Effects of the endothelin ETA receptor antagonist, TA-0201, on pulmonary arteries isolated from hypoxic rats. EJP. 376:233–238.
  • Jannsen LJ, Tazzeo T, Zuo J, Pertens E, Keshavjee, S. 2004. KCl evokes contraction of airway smooth muscle via activation of RhoA and Rho-kinase. Am J Physiol Lung Cell Mol Physiol. 287:L852–L858. doi: 10.1152/ajplung.00130.2004
  • Katz AM. 1997. Molecular Biology of Calcium Channels in the Cardiovascular System. Am J Cardiol. 80:17I–22I. doi: 10.1016/S0002-9149(97)00792-3
  • Kawanabe Y, Hashimoto N, Masaki, T. 2002. Characterization of Ca2+ channels involved in endothelin-1-induced contraction of rabbit basilar artery. J Cardiovasc Pharmacol. 40:438–447. doi: 10.1097/00005344-200209000-00013
  • Kawanabe Y, Nauli SM. 2005. Involvement of extracellular Ca2+ influx through voltage-independent Ca2+ channels in endothelin-1 function. Cellular Signaling. 17:911–916. doi: 10.1016/j.cellsig.2005.01.001
  • Komuro T, Miwa S, Zhang X-F, Minowa T, Enoki T, Kobayashi S, Okamoto Y, Ninomiya H, Sawamura T, Kikuta K, et al. 1997. Physiological role of Ca2+ permeable nonselective cation channel in endothelin-1-induced contraction of rabbit aorta. J Cardiovasc Pharmacol. 30:504–509. doi: 10.1097/00005344-199710000-00015
  • Laurant P, Berthelot A. 1996. Endothelin-1-induced contraction in isolated aortae from normotensive and DOCA-salt hypertensive rats: effect of magnesium. Brit J Pharmacol. 119:1367–1374. doi: 10.1111/j.1476-5381.1996.tb16048.x
  • Lin SY, Cai H, Gong QY, Yang ZC, Zhou JH, Zhang D, Zhang ZK. 1990. Role of endothelin-1 in the pathogenesis of hypertension in spontaneously hypertensive and 2 kidneys 1 clip rats. Chin Med J (Engl). 103:748–753.
  • Lin M-J, Leung GPH, Zhang W-M, Yang X-R, Yip K-P, Tse C-M, Sham JSK. 2004. Chronic hypoxia-induced upregulation os store-operated and receptor-operated Ca2+ channels in pulmonary arterial smooth muscle cells. Circ Res. 95:496–505. doi: 10.1161/01.RES.0000138952.16382.ad
  • Linder AE, Bendhack LM. 2002. Endothelin-1 induced contraction is impaired in the tail artery of renal hypertensive rats. Vasc Pharmacol. 39:77–82. doi: 10.1016/S1537-1891(02)00282-3
  • Lipscombe D, Helton TD, Xu W. 2004. L-type calcium channels: the low down. J Neurophysiol. 92:2633–2641. doi: 10.1152/jn.00486.2004
  • Mam V, Tanbe AF, Vitali SH, Arons E, Christou HA, Khalil RA. 2010. Impaired vasoconstriction and nitric oxide-mediated relaxation in pulmonary arteries of hypoxia- and monocrotaline-induced pulmonary hypertensive rats. JPET. 332:455–462. doi: 10.1124/jpet.109.160119
  • McCulloch KM, Docherty CH, Maclean MR. 1998. Endothelin receptors mediating contraction of rat and human pulmonary resistance arteries: effect of chronic hypoxia in the rat. Brit J Pharmacol. 123:1621–1630. doi: 10.1038/sj.bjp.0701785
  • Michel RP, Langleben D, Dupuis J. 2003. The endothelin system in pulmonary hypertension. Can J Physiol Pharmacol. 81:542–554. doi: 10.1139/y03-008
  • Minowa T, Miwa S, Kobayashi S, Enoki T, Zhang X-F, Komuro T, Iwamuro Y, Masaki T. 1997. Inhibitory effect of nitrovasodilators and cyclic GMP on ET-1 – activated Ca2+-permeable nonselective cation channel in rat aortic smooth muscle cells. Brit J Pharmacol. 120:1536–1544. doi: 10.1038/sj.bjp.0701059
  • Miwa S, Kawanabe Y, Okamoto Y, Masaki T. 2005. Ca2+ entry channels involved in endothelin-1-induced contractions of vascular smooth muscle cells. J Smooth Muscle Res. 41:61–75. doi: 10.1540/jsmr.41.61
  • Nelson MT, Quayle JB. 1995. Physiological roles and properties of potassium channels in arterial smooth muscle. Am J Physiol. 268:799–822.
  • Ohlstein EH, Elliott JD, Feuerstein GZ, Ruffolo Jr RR. 1996. Endothelin receptors classification, novel receptor antagonist, and potential therapeutic targets. Med Res Rev. 16:365–390. doi: 10.1002/(SICI)1098-1128(199607)16:4<365::AID-MED4>3.0.CO;2-V
  • Okatani Y, Taniguchi K, Sagara Y. 1995. Amplifying effect of endothelin-1 on serotonin-induced vasoconstriction of human umbilical artery. Am J Obstet Gynecol. 172:1240–1245. doi: 10.1016/0002-9378(95)91486-2
  • Opitz CF, Ewert R. 2006. Dual ETA/ETB vs. selective ETA endothelin receptor antagonism in patients with pulmonary hypertension. Eur J Clin Invest. 36:1–9. doi: 10.1111/j.1365-2362.2006.01691.x
  • Patel, A., Sharif-Naeini R, Folgering JRH, Bichet D, Duprat F, Honoré E. 2010. Canonical TPR channels and mechanotransduction: from physiology to disease states. Pflugers Arch–Eur J Physiol. 460:571–581. doi: 10.1007/s00424-010-0847-8
  • Peng W, Hoidal JR, Karwande SV, Farrukh IM. 1997. Effect of chronic hypoxia on K+ channels: regulation in human pulmonary vascular smooth muscle cells. Am J Physiol. 272:C1271–C1278.
  • Pollock DM. 1998. Endothelin: molecular biology, physiology, and pathology. In Endothelin receptor subtypes and tissue distribution. Totowa: Humana Press. p. 8.
  • Ramírez JH, Palacios M, Gutiérrez O. 2007. Implementation of the isolated vascular organ technique as a tool for evaluation of medicinal plants: a study of the vasodilatation effect of Salvia scutellarioides. Colombia Médica. 38:28–33.
  • Shimoda LA, Sham JSK, Sylvester, JT. 2000. Altered pulmonary vasoconstriction in the chronically hypoxic lung. Physiol Res. 49:549–560.
  • Shimoda LA, Sham JSK, Shimoda TH, Sylvester JT. 2000. L-type Ca2+ channels, resting [Ca2+]i, and ET-1-induced responses in chronically hypoxic pulmonary myocites. Am J Physiol Lung Cell Mol Physiol. 279:L884–894.
  • Shimoda LA, Sylvester JT, Sham JSK. 1998. Inhibition of voltage-gated K1 current in rat intrapulmonary arterial myocytes by endothelin. Am J Physiol. 274:L842–L853.
  • Sudjarwo SA, Hori M, Tanaka T, Matsuda Y, Okada T, Karaki H. 1994. Subtypes of endothelin ETA and ETB receptors mediating venous smooth muscle contraction. Biochem Biophys Res Commun. 200:627–633. doi: 10.1006/bbrc.1994.1494
  • Takuwa Y, Kasuya Y, Takuwa N, Kudo M, Yanagisawa M, Goto K, Masaki T, Yamashita K. 1990. Endothelin receptor is coupled to phospholipasa C via pertussis toxin insensitive guanine nucleotide binding, regulatory protein in vascular smooth muscle cells. J Clin Invest. 85:653–658. doi: 10.1172/JCI114488
  • Vásquez IC, Hernández A. 2011. Pulmonary hypertension in chickens, lapse in the exposure to hypobaric exposure and relation to pulmonary weight: body weight under temperature-controlled conditions. Rev Col Cienc Pec. 25:85–89.
  • Wang J, Juhaszova M, Rubin LJ, Yuan XJ. 1997. Hypoxia inhibits gene expression of voltage-gated K+ channel alpha subunits in pulmonary arterial smooth muscle cells. J Clin Invest. 100:2347–2353. doi: 10.1172/JCI119774
  • Wang J, Weigand L, Lu W, Sylvester JT, Semenza GL, Shimoda LA. 2006. Hypoxia inducible factor 1 mediates hypoxia-induced TPRC expression and elevated intracellular Ca2+ in pulmonary arterial smooth muscle cells. Circ Res. 98:1528–1537. doi: 10.1161/01.RES.0000227551.68124.98
  • Warner TD, Battistini B, Allcock GH, Vane JR. 1993. Endothelin ETA and ETB receptors mediate vasoconstriction and prostanoid release in the isolated kidney of the rat. Eur J Pharmacol. 250:447–453. doi: 10.1016/0014-2999(93)90032-D
  • Weigand L, Sylvester JT, Shimoda LA. 2006. Mechanisms of endothelin-1 induced contraction in pulmonary arteries from chronically hypoxic rats. Am J Physiol Lung Cell Mol Physiol. 290:L284–L290. doi: 10.1152/ajplung.00449.2004
  • Yanagisawa M, Kurihara H, Kimura S, Tomote Y, Kobayashi Y. 1988. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 332:411–415. doi: 10.1038/332411a0
  • Zhang X-F, Komuro T, Miwa S, Minowa T, Iwamuro Y, Okamoto Y, Ninomiya H, Sawamura T, Masaki T. 1998. Role of nonselective cation channels as Ca2+ entry pathway in endothelin-1 induced contraction and their suppression by nitric oxide. EJP. 352:237–245.