3,827
Views
14
CrossRef citations to date
0
Altmetric
Review

Advances in molecular genetic techniques applied to selection for litter size in goats (Capra hircus): a review

, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 38-44 | Received 03 Apr 2019, Accepted 08 Jan 2020, Published online: 28 Jan 2020

References

  • Aerts JMJ, Bols PEJ. 2010. Ovarian follicular dynamics. A review with Emphasis on the bovine species. Part II: antral development, exogenous influence and futures prospects. Reprod Domest Anim. 45:180–187. doi: 10.1111/j.1439-0531.2008.01298.x
  • Ahlawat S, Sharma R, Maitra A. 2012. Analysis of coding DNA sequence of GDF9 gene in Indian goats for prolificacy associated markers. Indian J Anim Sci. 82:721–725.
  • Ahlawat S, Sharma R, Maitra A, Borana K, Tantia MS, Prakash V. 2015a. Association analysis of a novel SNP in GPR54 gene with reproductive traits in Indian goats. Indian J Dairy Sci. 68(1):39–44.
  • Ahlawat S, Sharma R, Maitra A, Raja KN, Verma NK, Tantia MS. 2015b. Prolificacy in Indian goat breeds is independent of FecB mutation. Indian J Anim Sci. 85:617–620.
  • Ahlawat S, Sharma R, Maitra A, Tantia MS. 2015c. Current status of molecular genetics research of goat fecundity. Small Rumin Res. 125:34–42. doi: 10.1016/j.smallrumres.2015.01.027
  • Ahlawat S, Sharma R, Roy M, Mandakmale S, Prakash V, Tantia MS. 2016. Genotyping of novel SNP in BMPR1B, BMP15, and GDF9 genes for association with prolificacy in seven Indian goat breeds. Anim Biotechnol. 27:199–207. doi: 10.1080/10495398.2016.1167706
  • Amills M, Capote J, Tosser-Klopp G. 2017. Goat domestication and breeding: a jigsaw of historical, biological and molecular data with missing pieces. Anim Genet. 48:631–644. doi: 10.1111/age.12598
  • An XP, Hou JX, Gao TY, Lei YN, Song YX, Wang JG, Cao BY. 2015. Association analysis between variants in KITLG gene and litter size in goats. Gene. 558:126–130. doi: 10.1016/j.gene.2014.12.058
  • Ariyarathne HBPC, Ariyaratne HBS, Lokugalappatti LGS. 2017. Single nucleotide polymorphism of candidate genes in non-descript local goats of Sri Lanka. Livest Sci. 196:49–54. doi: 10.1016/j.livsci.2016.12.012
  • Bemji MN, Isa AM, Ibeagha-Awemu EM, Wheto M. 2018. Polymorphisms of caprine GnRHR gene and their association with litter size in West African Dwarf goats. Mol Biol Rep. 45:63–69. doi: 10.1007/s11033-017-4141-0
  • Berton MP, De Oliveira Silva RM, Peripolli E, Stafuzza NB, Martin JF, Álvarez MS, Gavinã BV, Toro MA, Banchero G, Oliveira PS, et al. 2017. Genomic regions and pathways associated with gastrointestinal parasites resistance in Santa Inês breed adapted to tropical climate. J Anim Sci Biotechnol. 8:73. doi: 10.1186/s40104-017-0190-4
  • Boone EM, Hawks BW, Li W, Garlow SJ. 2008. Genetic regulation of hypothalamic cocaine and amphetamine-regulated transcript (CART) in BxD inbred mice. Brain Res. 1194:1–7. doi: 10.1016/j.brainres.2007.11.074
  • Brito LF, Kijas J W, Ventura RV, Sargolzaei M, Laercio P-N, Cánovas A, Feng Z, Jafarikia M, Schenkel F. 2017. Genetic diversity and signatures of selection in various goat breeds revealed by genome-wide SNP markers. BMC Genomics. 18:1–20. doi: 10.1186/s12864-016-3406-7
  • Caetano AR. 2009. SNPs markers: basic concepts, applications in animal breeding and management and perspectives for the future. Rev Bras Zootec. 38:64–71. doi: 10.1590/S1516-35982009001300008
  • Caño EM, Daverio S, Cáceres M, Debenedetti S, Costoya S, Abad M, Allain D, Taddeo H, Poli1 MA. 2009. Detection of qtl affecting fleece traits on chi 19 in angora goats. Trop Subtrop Agroecosyst. 11:189–191.
  • Cardoso RC, Barbosa LP, Souza RS, França CS, Ribeiro Junior MDM, Santana ALA, Jesus RDL, Santos RS. 2018. Application of hormonal subdoses at acupoint Hou Hai in estrus synchronization protocols of goats. Semin-Cienc Agrar. 39:1135–1142. doi: 10.5433/1679-0359.2018v39n3p1135
  • Castañeda-Bustos VJ, Montaldo HH, Torres-Hernández G, Pérez-Elizalde S, Valencia-Posadas M, Hernández-Mendo O, Shepard L. 2014. Estimation of genetic parameters for productive life, reproduction, and milk-production traits in US dairy goats. J Dairy Sci. 97:2462–2473. doi: 10.3168/jds.2013-7503
  • Celestino JJH, Bruno JB, Lima-Verde IB, Matos MHT, Saraiva MV, Chaves RN, Martins FS, Almeida AP, Cunha RMS, Lima LF, et al. 2010. Steady-state level of kit ligand mRNA in goat ovaries and the role of kit ligand in preantral follicle survival and growth in vitro. Mol Reprod Dev. 77:231–240.
  • Chu MX, Wen XJ, Ran D, Wei LX, Li F, Hui MY, Kui L. 2009. Polymorphism of gonadotropin releasing hormone receptor (GnRHR) gene and its relationship with prolificacy of lining grey goat. J Agric Biotechnol. 17:218–223.
  • Chu MX, Wu ZH, Feng T, Cao GL, Fang L, Di R, Huang DW, Li XW, Li N. 2011. Polymorphism of GDF9 gene and its association with litter size in goats. Vet Res Commun. 35:329–336. doi: 10.1007/s11259-011-9476-8
  • Cui Y, Yan H, Wang K, Xu H, Zhang X, Zhu H, Liu J, Qu L, Lan X, Pan C. 2018. Insertion/deletion within the KDM6A gene is significantly associated with litter size in goat. Front Genet. 9:1–11. doi: 10.3389/fgene.2018.00091
  • Devendra C. 2013. Investments on pro-poor development projects on goats: ensuring success for improved livelihoods. Asian-Australas J Anim Sci. 26:1–18. doi: 10.5713/ajas.2013.r.01
  • Dong Y, Xie M, Jiang Y, Xiao N, Du X, Zhang W, Tosser-Klopp G, Wang J, Yang S, Liang J, et al. 2013. Sequencing and automated whole-genome optical mapping of the genome of a domestic goat (Capra hircus). Nat Biotechnol. 31:135–141. doi: 10.1038/nbt.2478
  • Dubeuf JP, Morand-Fehr P, Rubino R. 2004. Situation, changes and future of goat industry around the world. Small Rumin Res. 51:165–173. doi: 10.1016/j.smallrumres.2003.08.007
  • Dungan HM, Clifton DK, Steiner RA. 2006. Minireview: kisspeptin neurons as central processors in the regulation of gonadotropin-releasing hormone secretion. Endocrinology. 147:1154–1158. doi: 10.1210/en.2005-1282
  • FAO. 2017. World agriculture: towards 2015-2030. A FAO perspective; [accessed 2018 Apr 27]. http://www. fao.org/docrep/005/y4252e/y4252e07a.htm#TopOfPage.
  • Feng T, Geng CX, Lang XZ, Chu MX, Cao GL, Di R, Fang L, Chen HQ, Liu XL, Li N. 2011. Polymorphisms of caprine GDF9 gene and their association with litter size in Jining Grey goats. Mol Biol Rep. 38:5189–5197. doi: 10.1007/s11033-010-0669-y
  • Geldermann H. 1975. Investigations on inheritance of quantitative characters in animals by gene markers. I methods. Theor Appl Genet. 46:319–330. doi: 10.1007/BF00281673
  • George JW, Dille EA, Heckert LL. 2011. Current concepts of follicle-stimulating hormone receptor gene regulation. Biol Reprod. 84:7–17. doi: 10.1095/biolreprod.110.085043
  • Georges M. 1999. Towards marker assisted selection in livestock. Reprod Nutr Dev. 39:555–561. doi: 10.1051/rnd:19990504
  • Gonçalves AL, Lana RP, Vieira RAM, Henrique DS, Mancio AB, Pereira JC. 2008. Avaliação de sistemas de produção de caprinos leiteiros na Região Sudeste do Brasil. Braz J Anim Sci. 37:366–376.
  • Guimarães SEF, Lopes PS, Guimarães JD, Nascimento CS, Pinho RO. 2013. Biotechnology Applied to the Improvement of Pigs. 10th Brazilian Symposium on Animal Breeding. Aug 18–23. Uberaba, Brazil.
  • Gunia M, Mandonnet N, Alexandre G, Naves M, Phocas F. 2010. Genetic parameters of litter size in Creole goats and their implication for a breeding programme including adaptation traits. Adv Anim Biosci. 1:402–403. doi: 10.1017/S2040470010000300
  • Guo X, Li Y, Chu MX, Feng C, Di R, Liu Q, Feng T, Cao G, Huang D, Fang L, et al. 2013. Polymorphism of 5′ regulatory region of caprine FSHR gene and its association with litter size in Jining Grey goat. Turk J Vet Anim Sci. 37:497–503. doi: 10.3906/vet-1105-39
  • Hafez B, Hafez ESE. 2004. Reprodução Animal. 7th ed. Barueri, SP: Manole. 582.
  • Haldar A, Pal P, Datta M, Paul R, Saumen K, Pal Majumdar D, Biswas CK, Pan S. 2014. Prolificacy and its relationship with age, body weight, parity, previous litter size and body linear type traits in meat-type goats. Asian-Australas J Anim Sci. 27:628–634. doi: 10.5713/ajas.2013.13658
  • Hamed A, Mabrouk MM, Shaat I, Bata S. 2009. Estimation of genetic parameters and some non- genetic factors for litter size at birth and weaning and milk yield traits in Zaraibi goats. Egyptian J Sheep Goat Sci. 4:55–64.
  • Heikal HSM, Naby WSHAE. 2017. Genetic Improvement of litter size in four goat breeds in Egypt using polymorphism in bone morphogenetic protein 15 gene. Adv Anim Vet Sci. 5:410–415. doi: 10.17582/journal.aavs/2017/5.10.410.415
  • Ismail MKA, Brito LF, Miller SP, Sargolzaei M, Grossi DA, Moore SS, Plastow G, Stothard P, Nayeri S, Schenkel FS. 2017. Genome wide association studies and genomic prediction of breeding values for calving performance and body conformation traits in Holstein cattle. Genet Sel Evol. 49:82. doi: 10.1186/s12711-017-0356-8
  • Juengel JL, Hudson NL, Heath DA, Smith P, Reader KL, Lawrence SB, O’Connell AR, Laitinen MPE, Cranfield M, Groome N, et al. 2002. Growth differentiation factor 9 and bone morphogenetic protein 15 are essential for ovarian follicular development in sheep. Biol Reprod. 67:1777–1789. doi: 10.1095/biolreprod.102.007146
  • Koning D, Visscher P, Knott SA, Haley CS. 1998. A strategy for QTL detection in half-sib populations. Anim Sci. 67:257–268. doi: 10.1017/S1357729800010018
  • Lai FN, Zhai HL, Cheng M, Ma JY, Cheng SF, Ge W, Zhang GL, Wang JJ, Zhang RQ WX, Min LJ, et al. 2016. Whole-genome scanning for the litter size trait associated genes and SNPs under selection in dairy goat (Capra hircus). Sci Rep. 6:1–12. doi: 10.1038/s41598-016-0001-8
  • Leal G, Sampaio D, Bessegato L. 2018. Avaliação Econômico-Financeira de Produção de Leite Caprino da Zona da Mata Mineira. Revista Vianna Sapiens. 9:91–114. doi: 10.31994/rvs.v9i1.269
  • Legarra A, Aguilar I, Misztal I. 2009. A relationship matrix including full pedigree and genomic information. J Dairy Sci. 92:4656–4663. doi: 10.3168/jds.2009-2061
  • Li G, An XP, Fu MZ, Hou JX, Sun RP, Zhu GQ, Wang JG, Cao BY. 2011. Polymorphism of PRLR and LHβ genes by SSCP marker and their association with litter size in Boer goats. Livest Sci. 136:281–286. doi: 10.1016/j.livsci.2010.08.014
  • Long Y, Zhong H, Liu S, Tao M, Chen L, Xiao J, Liu Y. 2009. Molecular characterization and genetic analysis of Gnrh2 and Gthβ in different ploidy level fishes. Prog Nat Sci. 19:1569–1579. doi: 10.1016/j.pnsc.2009.06.002
  • Maekawa R, Lee L, Okada M, Assada H, Shinagawa M, Tamura I, Sato S, Tamura H, Sugino N. 2016. Changes in gene expression of histone modification enzymes in rat granulosa cells undergoing luteinization during ovulation. J Ovarian Res. 9:1–9. doi: 10.1186/s13048-016-0225-z
  • Maitra A, Sharma R, Ahlawat S, Tantia MS, Manoranja R, Prakash V. 2014. Association analysis of polymorphisms in caprine KiSS1 genewith reproductive traits. Anim Reprod Sci. 151:71–77. doi: 10.1016/j.anireprosci.2014.09.013
  • Maroteau C, Palhière I, Larroque H, Clément V, Tosser-Klopp G, Rupp R. 2013. QTL detection for traits of interest for the dairy goat industry. 64th Annual Meeting of the Europe Federation of Animal Science; Nantes, France.
  • Marrube G, Cano EM, Roldán DL, Bidinost F, Abad M, Allain D, Vaiman D, Taddeo H, Poli MA. 2007. QTL affecting conformation traits in Angora goats. Small Rumin Res. 71:255–263. doi: 10.1016/j.smallrumres.2006.07.008
  • Martin P, Palhière I, Maroteau C, Bardou P, Canale-Tabet K, Sarry J, Woloszyn F, Bertrand-Miche J, Racke I, Besir H, et al. 2017. A genome scan for milk production traits in dairy goats reveals two new mutations in Dgat1 reducing milk fat content. Sci Rep. 7:1872. doi: 10.1038/s41598-017-02052-0
  • Martin P, Palhière I, Tosser-Klopp G, Rupp R. 2016. Heritability and genome-wide association mapping for supernumerary teats in French Alpine and Saanen dairy goats. J Dairy Sci. 99:8891–8900. doi: 10.3168/jds.2016-11210
  • Mekuriaw G, Mwacharo JM, Dessie T, Mwai O, Djikeng A, Osama S, Gebreyesus G, Kidane A, Abegaz S, Tesfaye K. 2017. Polymorphism analysis of kisspeptin (KISS1) gene and its association with litter size in Ethiopian indigenous goat populations. Afr J Biotechnol. 16:1254–1264.
  • Menezes LM, Sousa WH, Cavalcanti-Filho EP, Gama LT. 2016. Genetic parameters for reproduction and growth traits in Boer goats in Brazil. Small Rumin Res. 136:247–256. doi: 10.1016/j.smallrumres.2016.02.003
  • Miao X, Luo Q, Qin X. 2016. Genome-wide transcriptone analysis in the ovaries of two goats identifies differentially expressed genes related to fecundity. Gene. 582:69–76. doi: 10.1016/j.gene.2016.01.047
  • Mohammadi H, Shahrebabak MM, Shahrebabak HM. 2012. Genetic parameter estimates for growth traits and prolificacy in Raeini Cashmere goats. Trop Anim Health Prod. 44:1213–1220. doi: 10.1007/s11250-011-0059-z
  • Molina A, Muñoz E, Díaz C, Menéndez-Buxadera A, Ramón M, Sánchez M, Carabaño MJ, Serradilla JM. 2018. Goat genomic selection: Impact of the integration of genomic information in the genetic evaluations of the Spanish Florida goats. Small Rumin Res. 163:72–75. doi: 10.1016/j.smallrumres.2017.12.010
  • Mrode R, Tarekegn GM, Mwacharo JM, Djikeng A. 2018. Invited review: Genomic selection for small ruminants in developed countries: how applicable for the rest of the world? Animal. 12:1333–1340. doi: 10.1017/S1751731117003688
  • Mucha S, Mrode R, Coffey M, Kizilaslan M, Desire S, Conington J. 2017. Genome-wide association study of conformationand milk yield in mixed-breed dairy goats. J Dairy Sci. 101:2213–2225. doi: 10.3168/jds.2017-12919
  • Mucha S, Mrode R, MacLaren-Lee I, Coffey M, Conington J. 2015. Estimation of genomic breeding values for milk yield in UK dairy goats. J Dairy Sci. 98:8201–8208. doi: 10.3168/jds.2015-9682
  • Naor Z. 2009. Signaling by G-protein-coupled receptor (GPCR): studies on the GnRH receptor. Front Neuroendocrin. 30:10–29. doi: 10.1016/j.yfrne.2008.07.001
  • Otsuka F, Mctavish KJ, Shimasaki S. 2011. Integral role of GDF-9 and BMP-15 in ovarian function. Mol Reprod Dev. 78:9–21. doi: 10.1002/mrd.21265
  • Pulina G, Milán MJ, Lavín MP, Theodoridis A, Morin E, Capote J, Thomas DL, Francesconi AHD, Caja G. 2018. Invited review: Current production trends, farm structures, and economics of the dairy sheep and goat sectors. J Dairy Sci. 101:6715–6729. doi: 10.3168/jds.2017-14015
  • Rajesh G, Mishra SR, Paul A, Punetha M, Vidyalakshmi GM, Narayanan K, Bag S, Bhure SK, Singh Chouhan V, Maurya VP, et al. 2018. Transcriptional and translational abundance of Bone morphogenetic protein (BMP) 2, 4, 6, 7 and their receptors BMPR1A, 1B and BMPR2 in buffalo ovarian follicle and the role of BMP4 and BMP7 on estrogen production and survival of cultured granulosa cells. Res Vet Sci. 118:371–388. doi: 10.1016/j.rvsc.2018.04.002
  • Rothschild MF, Soller M. 1997. Candidate gene analysis to detect genes controlling traits of economic importance in domestic livestock. Probe (Adelaide). 8:13–20.
  • Rupp R, Mucha S, Lorroque H, McEwan J, Conington J. 2016. Genomic application in sheep and goat breeding. Animal Frontiers. 6:39–44. doi: 10.2527/af.2016-0006
  • Santiago GG, Siqueira F, Cardoso FF, Regitano LCA, Ventura R, Sollero BP, Souza MD, Mokry FB, Ferreira ABR, Torres RAA. 2017. Genomewide association study for production and meat quality traits in Canchim beef cattle. J Anim Sci. 95:3381–3390.
  • Santos NPS, Sarmento JLR, Pimenta Filho EC, Campelo JEG, Figueiredo Filho LAS, Sousa Jr SC. 2013. Aspectos ambientais e genéticos da prolificidade em caprinos utilizando modelos bayesianos de limiar e linear. Arq Bras Med Vet Zootec. 65:885–893. doi: 10.1590/S0102-09352013000300038
  • Sarmento JLR, Filho P, Abreu EC, Ribeiro MN, Sousa JER. 2010. Prolificidade de caprinos mestiços leiteiros no semiárido nordestino. R Bras Zootec. 39:1471–1476. doi: 10.1590/S1516-35982010000700011
  • Sharma R, Ahlawat S, Maitra A, Roy M, Mandakmale S, Tantia MS. 2013. Polymorphism of BMP4 gene in Indian goat breeds differing in prolificacy. Gene. 532:140–145. doi: 10.1016/j.gene.2013.08.086
  • Sharma R, Ahlawat S, Tantia MS. 2015a. Novel polymorphism of AA-NAT gene in Indian goat breeds differing in reproductive traits. Iran J Vet Res. 16:377–380.
  • Sharma R, Maitra A, Ahlawat S, Roy M, Mandakmale S, Tantia MS. 2015b. Identification of novel SNPs in INHBB gene of Indian goat. Indian J Anim Sci. 85:55–59.
  • Shrestha JNB, Fahmy MH. 2007. Breeding goats for meat production. 3. Selection and breeding strategies. Small Rumin Res. 67:113–125. doi: 10.1016/j.smallrumres.2005.05.040
  • Silva JRV, Figueiredo JR, Hurk RVD. 2009. Involvement of growth hormone (GH) and insulin-like growth factor (IGF) system in ovarian folliculogenesis. Theriogenology. 71:1193–1208. doi: 10.1016/j.theriogenology.2008.12.015
  • Souza CJH, MacDougall C, Campbell BK, McNeilly AS, Baird DT. 2001. The Booroola (FecB) phenotype is associated with a mutation in the bone morphogenetic receptor type 1 B (BMPR1B) gene. J Endocrinol. 169:R1–R6. doi: 10.1677/joe.0.169r001
  • Taya K, Kaneko H, Takedom T, Kishi H, Watanabe G. 1996. Role of inhibin in the regulation of FSH secretion and folliculogenesis in cows. Anim Reprod Sci. 42:563–570. doi: 10.1016/0378-4320(96)01532-1
  • Thomas N, Venkatachalapathy RT, Aravindakshan TV, Kurian E. 2017. Association of a Cac8I polymorphism in the IGF1 gene with growth traits in Indian goats. J Genet Eng Biotechnol. 15:7–11. doi: 10.1016/j.jgeb.2017.04.002
  • Thomas N, Venkatachalapathy T, Aravindakshan T, Raghavan KC. 2016. Molecular cloning, SNP detection and association analysis of 5’ flanking region of the goat IGF1 gene with prolificacy. Anim Reprod Sci. 167:8–15. doi: 10.1016/j.anireprosci.2016.01.016
  • Tosser-Klopp G, Bardou P, Bouchez O, Cabau C, Crooijmans R, Dong Y, Donnadieu-Tonon C, Eggen A, Heuven HCM, Jamli S. 2014. Design and characterization of a 52K SNP chip for goats. Plos One. 9(1):e86227. doi:10.1371/journal.pone.0086227.
  • Vaiman D, Schibler L, Bourgeois F, Oustry A, Amigues Y, Cribiu EP. 1996. A genetic linkage map of the male goat genome. Genetics. 144:279–305.
  • Van Son M, Enger EG, Grove H, Ros-Freixedes R, Kent MP, Lien S, Grindflek E. 2017. Genome-wide association study confirm major QTL for backfat fatty acid composition on SSC14 in Duroc pigs. BMC Genomics. 18:369. doi: 10.1186/s12864-017-3752-0
  • Vignal A, Milan D, Sancristobal M, Eggen A. 2002. A Review on SNP and other types of molecular markers and their use in animal genetics. Genet Sel Evol. 34:275–305. doi: 10.1186/1297-9686-34-3-275
  • Visser C, Marle-Köstera EV, Bovenhuis H, Crooijmans RPMA. 2011. QTL for mohair traits in South African Angora goats. Small Rumin Res. 100:8–14. doi: 10.1016/j.smallrumres.2011.05.007
  • Visser C, Marle-Köstera EV, Snymanb MA, Bovenhuis HR, Crooijmans PMA. 2013. Quantitative trait loci associated with pre-weaning growth in South African Angora goats. Small Rumin Res. 112:15–20. doi: 10.1016/j.smallrumres.2012.11.035
  • Wang PQ, Deng LM, Zhang BY, Chu MX, Hou JZ. 2011. Polymorphisms of the cocaine-amphetamine-regulated transcript (CART) gene and their association with reproductive traits in Chinese goats. Genet Mol Res. 10:731–738. doi: 10.4238/vol10-2gmr1091
  • Wang K, Yan H, Xu H, Yang Q, Zhang S, Pan C, Chen H, Zhu H, Liu J, Qu L, Lan X. 2018. A novel indel within goat casein alpha S1 gene is significantly associated with litter size. Gene. 671:161–169. doi: 10.1016/j.gene.2018.05.119
  • Yang W, Tang K, Zhang C, Xu D, Wen Q, Yang L. 2011. Polymorphism of the GnRHR gene and its association with litter size in Boer goats. S Afr J Anim Sci. 41:338–402. doi: 10.4314/sajas.v41i4.10
  • Zhang C, Liu Y, Huang K, Zeng W, Xu D, Wen Q, Yang Z. 2011a. The association of two single nucleotide polymorphisms (SNPs) in growth hormone (GH) gene with litter size and superovulation response in goat-breeds. Genet Mol Biol. 34:49–55. doi: 10.1590/S1415-47572010005000110
  • Zhang C, Wu CJ, Zeng W, Huang K, Li X, Feng JH, Wang D, Hua GH, Xu DQ, Wen QY, Yang LG. 2011b. Polymorphism in exon 3 offollicle stimulating hormone beta (FSHB) subunit gene and its associ-ation with litter traits and superovulation in the goat. Small Rumin Res. 96:53–57. doi: 10.1016/j.smallrumres.2010.11.002
  • Zhou H-L, Gu L-H, Sun Y-Y, Xu T-S, Rong G. 2014. Genetic and phenotypic parameter estimates for growth traits of Hainan black goat in southern China. Anim Prod Sci. 55:447–453. doi: 10.1071/AN12228