912
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Establishment of a subcutaneous adipogenesis model and distinct roles of LKB1 regulation on adipocyte lipid accumulation in high-altitude Bos grunniens

, , , , , , , , , & show all
Pages 167-176 | Received 23 Apr 2021, Accepted 09 Feb 2022, Published online: 17 Mar 2022

References

  • Ali AT, Hochfeld WE, Myburgh R, Pepper MS. 2013. Adipocyte and adipogenesis. Eur J Cell Biol. 92(6-7):229–236.
  • Bi P, Shan T, Liu W, et al. 2014. Inhibition of Notch signaling promotes browning of white adipose tissue and ameliorates obesity. Nat Med. 20(8):911–918.
  • Burl RB, Ramseyer VD, Rondini EA, Pique-Regi R, Lee YH, Granneman JG. 2018. Deconstructing Adipogenesis induced by beta3-Adrenergic receptor activation with single-cell expression profiling. Cell Metab. 28(2):300–309.e304.
  • Choi EW, Lee M, Song JW, Kim K, Lee J, Yang J, Lee SH, Kim IY, Choi JH, Seong JK. 2020. Fas mutation reduces obesity by increasing IL-4 and IL-10 expression and promoting white adipose tissue browning. Sci Rep. 10(1):12001.
  • Choi S, Lim DS, Chung J. 2015. Feeding and fasting signals converge on the LKB1-SIK3 pathway to regulate lipid metabolism in drosophila. PLoS Genet. 11(5):e1005263.
  • Chouchani ET, Kazak L, Spiegelman BM. 2019. New advances in adaptive thermogenesis: UCP1 and beyond. Cell Metab. 29(1):27–37.
  • Chu DT, Gawronska-Kozak B. 2017. Brown and brite adipocytes: same function, but different origin and response. Biochimie. 138:102–105.
  • Chu DT, Malinowska E, Gawronska-Kozak B, Kozak LP. 2014. Expression of adipocyte biomarkers in a primary cell culture models reflects preweaning adipobiology. J Biol Chem. 289(26):18478–18488.
  • Chu DT, Tao Y. 2017. Human thermogenic adipocytes: a reflection on types of adipocyte, developmental origin, and potential application. J Physiol Biochem. 73(1):1–4.
  • Cohen P, Spiegelman BM. 2016. Cell biology of fat storage. Mol Biol Cell. 27(16):2523–2527.
  • Deng Y, Jin F, Li X, et al. 2019. Sauchinone suppresses FceRI-mediated mast cell signaling and anaphylaxis through regulation of LKB1/AMPK axis and SHP-1-Syk signaling module. Int Immunopharmacol. 74:105702.
  • Dou HX, Wang T, Su HX, Gao DD, Xu YC, Li YX, Wang HY. 2020. Exogenous FABP4 interferes with differentiation, promotes lipolysis and inflammation in adipocytes. Endocrine. 67(3):587–596.
  • Fu S, Luan J, Xin M, Wang Q, Xiao R, Gao Y. 2013. Fate of adipose-derived stromal vascular fraction cells after co-implantation with fat grafts: evidence of cell survival and differentiation in ischemic adipose tissue. Plast Reconstr Surg. 132(2):363–373.
  • Garin-Shkolnik T, Rudich A, Hotamisligil GS, Rubinstein M. 2014. FABP4 attenuates PPARgamma and adipogenesis and is inversely correlated with PPARgamma in adipose tissues. Diabetes. 63(3):900–911.
  • Hemminki A, Markie D, Tomlinson I, et al. 1998. A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature. 391(6663):184–187.
  • Hollstein PE, Eichner LJ, Brun SN, et al. 2019. The AMPK-related kinases SIK1 and SIK3 mediate key tumor-suppressive effects of LKB1 in NSCLC. Cancer Discov. 9(11):1606–1627.
  • Hu E, Liang P, Spiegelman BM. 1996. Adipoq is a novel adipose-specific gene dysregulated in obesity. J Biol Chem. 271(18):10697–10703.
  • Hu Q, Ma T, Wang K, Xu T, Liu J, Qiu Q. 2012. The Yak genome database: an integrative database for studying yak biology and high-altitude adaption. BMC Genomics. 13:600.
  • Ikeda K, Yamada T. 2020. UCP1 dependent and independent thermogenesis in Brown and Beige Adipocytes. Front Endocrinol (Lausanne). 11:498.
  • Ji H, Ramsey MR, Hayes DN, et al. 2007. LKB1 modulates lung cancer differentiation and metastasis. Nature. 448(7155):807–810.
  • Ji QM, Xin JW, Chai ZX, et al. 2020. A chromosome-scale reference genome and genome-wide genetic variations elucidate adaptation in yak. Mol Ecol Resour.
  • Ji QM, Xin JW, Chai ZX, et al. 2021. A chromosome-scale reference genome and genome-wide genetic variations elucidate adaptation in yak. Mol Ecol Resour. 21(1):201–211.
  • Khan R, Raza SHA, Junjvlieke Z, Xiaoyu W, Garcia M, Elnour IE, Hongbao W, Linsen Z. 2019. Function and transcriptional regulation of bovine TORC2 gene in Adipocytes: roles of C/EBP, XBP1, INSM1 and ZNF263. Int J Mol Sci. 20(18):4338.
  • Kulterer OC, Niederstaetter L, Herz CT, Haug AR, Bileck A, Pils D, Kautzky-Willer A, Gerner C, Kiefer FW. 2020. The presence of active brown adipose tissue determines cold-induced energy expenditure and oxylipin profiles in humans. J Clin Endocrinol Metab. 105:7.
  • Lan D, Ji W, Xiong X, Liang Q, Yao W, Mipam TD, Zhong J, Li J. 2020. Population genome of the newly discovered Jinchuan yak to understand its adaptive evolution in extreme environments and generation mechanism of the multirib trait. Integr Zool. 16(5):685–695.
  • Lane MD, Tang QQ, Jiang MS. 1999. Role of the CCAAT enhancer binding proteins (C/EBPs) in adipocyte differentiation. Biochem Biophys Res Commun. 266(3):677–683.
  • Lei Z, Bai X, Lin Y, Li J, Zi X, Xiong X, Xiong Y. Coding region cloning of yak (Bos grunniens) Lkb1 gene and its expression analysis in skeletal muscle. J Agric Biotechnol. 27(01):71–79. 2019.
  • Li J, Pan X, Pan G, et al. 2020. Transferrin receptor 1 regulates thermogenic capacity and cell fate in Brown/Beige Adipocytes. Adv Sci Weinh. 7(12):1903366.
  • Liang HJ, Chai RC, Li X, Kong JG, Jiang JH, Ma J, Vatcher G, Yu AC. 2015. Astrocytic exportin-7 responds to ischemia through mediating LKB1 translocation from the nucleus to the cytoplasm. J Neurosci Res. 93(2):253–267.
  • McGown C, Birerdinc A, Younossi ZM. 2014. Adipose tissue as an endocrine organ. Clin Liver Dis. 18(1):41–58.
  • Mota de Sa P, Richard AJ, Hang H, Stephens JM. 2017. Transcriptional regulation of Adipogenesis. Compr Physiol. 7(2):635–674.
  • Mueller C, Ratner D, Zhong L, Esteves-Sena M, Gao G. 2012. Production and discovery of novel recombinant adeno-associated viral vectors. Curr Protoc Microbiol. 14:11.
  • Nakada D, Saunders TL, Morrison SJ. 2010. Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature. 468(7324):653–658.
  • Ou Y. 1990. Seasonal changes in some traits of yak (review). Ecol Demost Anim. 3:35–41.
  • Qiu Q, Zhang G, Ma T, et al. 2012. The yak genome and adaptation to life at high altitude. Nat Genet. 44(8):946–949.
  • Queiroz AL, Lessard SJ, Ouchida AT, et al. 2021. The MicroRNA miR-696 is regulated by SNARK and reduces mitochondrial activity in mouse skeletal muscle through Pgc1alpha inhibition. Mol Metab. 51:101226.
  • Rodbell M, Jones AB. 1966. Metabolism of isolated fat cells. 3. The similar inhibitory action of phospholipase C (Clostridium perfringens alpha toxin) and of insulin on lipolysis stimulated by lipolytic hormones and theophylline. J Biol Chem. 241(1):140–142.
  • Ronnett GV, Kim EK, Landree LE, Tu Y. 2005. Fatty acid metabolism as a target for obesity treatment. Physiol Behav. 85(1):25–35
  • Rosen ED. 2005. The transcriptional basis of adipocyte development. Prostagland Leukot Essent Fatty Acids. 73(1):31–34.
  • Rosen ED, Spiegelman BM. 2014. What we talk about when we talk about fat. Cell. 156(1–2):20–44.
  • Saely CH, Geiger K, Drexel H. 2012. Brown versus white adipose tissue: a mini-review. Gerontology. 58(1):15–23.
  • Sarjeant K, Stephens JM. 2012. Adipogenesis. Cold Spring Harb Perspect Biol. 4(9):a008417.
  • Shackelford DB, Shaw RJ. 2009. The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer. 9(8):563–575.
  • Shan T, Xiong Y, Zhang P, et al. 2016. Lkb1 controls brown adipose tissue growth and thermogenesis by regulating the intracellular localization of CRTC3. Nat Commun. 7:12205.
  • Shan T, Zhang P, Liang X, Bi P, Yue F, Kuang S. 2014. Lkb1 is indispensable for skeletal muscle development, regeneration, and satellite cell homeostasis. Stem Cells. 32(11):2893–2907.
  • Silva JE, Rabelo R. 1997. Regulation of the uncoupling protein gene expression. Eur J Endocrinol. 136(3):251–264.
  • Song P, Xie Z, Wu Y, Dong Y, Zou MH. 2019. Withdrawal: protein kinase Czeta-dependent LKB1 serine 428 phosphorylation increases LKB1 nucleus export and apoptosis in endothelial cells. J Biol Chem. 294(37):13831.
  • Song P, Xie Z, Wu Y, Xu J, Dong Y, Zou MH. 2008. Protein kinase Czeta-dependent LKB1 serine 428 phosphorylation increases LKB1 nucleus export and apoptosis in endothelial cells. J Biol Chem. 283(18):12446–12455.
  • Tang S, Wu F, Lin X, Gui W, Zheng F, Li H. 2020. The effects of new selective PPARalpha agonist CP775146 on systematic lipid metabolism in obese mice and Its potential mechanism. J Diabetes Res. 2020:4179852.
  • Tumminia A, Vinciguerra F, Parisi M, Graziano M, Sciacca L, Baratta R, Frittitta L. 2019. Adipose tissue, obesity and adiponectin: role in endocrine cancer risk. Int J Mol Sci. 20:12.
  • Wang G, Wu B, Zhang L, Cui Y, Zhang B, Wang H. 2020a. Laquinimod prevents Adipogenesis and obesity by down-regulating PPAR-gamma and C/EBPalpha through activating AMPK. ACS Omega. 5(36):22958–22965.
  • Wang L, Zhang S, Zhang W, Cheng G, Khan R, Junjvlieke Z, Li S, Zan L. 2020b. miR-424 promotes bovine Adipogenesis through an unconventional post-transcriptional regulation of STK11. Front Genet. 11:145.
  • Wang Y, Paulo E, Wu D, Wu Y, Huang W, Chawla A, Wang B. 2017. Adipocyte liver kinase b1 suppresses beige adipocyte renaissance through class IIa histone deacetylase 4. Diabetes. 66(12):2952–2963.
  • Wiener G, Jianlin H, Ruijun L, Wiener G, Jianlin H, Ruijun L. 2003. The yak in relation to its environment.
  • Xie F. 2019. The expression difference of genes related to brown adipose tissue of Yak and comparison of fatty acid composition in different seasons [Master]. Qinghai University. 83 pp.
  • Xie Z, Dong Y, Zhang J, Scholz R, Neumann D, Zou MH. 2009. Identification of the serine 307 of LKB1 as a novel phosphorylation site essential for its nucleocytoplasmic transport and endothelial cell angiogenesis. Mol Cell Biol. 29(13):3582–3596.
  • Xiong Y, Page JC, Narayanan N, et al. 2017. Peripheral neuropathy and Hindlimb paralysis in a mouse model of adipocyte-specific knockout of Lkb1. EBioMedicine. 24:127–136.
  • Xiong Y, Yue F, Jia Z, Gao Y, Jin W, Hu K, Zhang Y, Zhu D, Yang G, Kuang S. 2018. A novel brown adipocyte-enriched long non-coding RNA that is required for brown adipocyte differentiation and sufficient to drive thermogenic gene program in white adipocytes. Biochim Biophys Acta Mol Cell Biol Lipids. 1863(4):409–419.
  • Xu Q, Lin Y, Wang Y, Bai W, Zhu J. 2020. Knockdown of KLF9 promotes the differentiation of both intramuscular and subcutaneous preadipocytes in goat. Biosci Biotechnol Biochem. 84(8):1594–1602.
  • Yang C, Ding X, Qian J, Wu X, Liang C, Bao P, Long R, Yan P. 2017. The progress of anato mical research of yaks adapt to Qinghai-Tibet Plateau environment. Chin J. Anim Sci. 3:18–24.
  • Zhang W, Wang Q, Song P, Zou MH. 2013. Liver kinase b1 is required for white adipose tissue growth and differentiation. Diabetes. 62(7):2347–2358.
  • Zhang X, Godbey WT. 2006. Viral vectors for gene delivery in tissue engineering. Adv Drug Deliv Rev. 58(4):515–534.
  • Zhang Y, Guo X, Pei J, Chu M, Ding X, Wu X, Liang C, Yan P. 2020. CircRNA expression profile during Yak adipocyte differentiation and screen potential circRNAs for adipocyte differentiation. Genes. 11:4.
  • Zhang Y, Wu X, Liang C, Bao P, Ding X, Chu M, Jia C, Guo X, Yan P. 2018. MicroRNA-200a regulates adipocyte differentiation in the domestic yak Bos grunniens. Gene. 650:41–48.
  • Zhou JW, Zhong CL, Liu H, et al. 2017. Comparison of nitrogen utilization and urea kinetics between yaks (Bos grunniens) and indigenous cattle (Bos taurus). J Anim Sci. 95(10):4600–4612.
  • Zhu HH, Wang XT, Sun YH, He WK, Liang JB, Mo BH, Li L. 2018. Pim1 overexpression prevents apoptosis in cardiomyocytes after exposure to hypoxia and oxidative stress via upregulating cell autophagy. Cell Physiol Biochem. 49(6):2138–2150.