1,376
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Digestible and metabolizable energy prediction models in guinea pig feedstuffs

, &
Pages 355-362 | Received 10 Jun 2020, Accepted 15 May 2022, Published online: 27 May 2022

References

  • AEC. Alimentation Equilibrée de Commentry (AEC). 1978. Animal feeding: energy, amino acids, vitamins, minerals. Paris: Doc. No.4. AEC, Commentry, France.
  • Aguilera JF. 2001. Aportaciones al conocimiento de la nutrición energética de pequeños rumiantes, con particular referencia al ganado caprino. Arch Zootec. 50(192):565–596.
  • Ahn JS, Son GH, Kim MJ, Choi CS, Lee CW, Park JK, Kwon EG, Shin JS, Park BK. 2019. Effect of total digestible nutrients level of concentrates on growth performance, carcass characteristics, and meat composition of Korean Hanwoo steers. Food Sci Anim Resour. 39(3):388–401. doi:10.5851/kosfa.2019.e32.
  • AOAC. 1990. Official methods of analysis of the AOAC. 15th ed. Arlington, VA, USA: Association of Official Analytical Chemists.
  • Bakarat N, Laudadio V, Cazzato E, Tufarelli V. 2013. Potential contribution of retama raetam (forssk.) webb & berthel as a forage shrub in Sinai, Egypt. Arid Land Res Manag. 27:257–271. doi:10.1080/15324982.2012.756561.
  • Bindelle J, Kinsama A, Picron P, Umba di M’Balu J, Kindele E, Buldgen A. 2009. Nutritive value of unconventional fibrous ingredients fed to guinea pigs in the Democratic Republic of Congo. Trop Anim Health Prod. 41(8):1731–1740. doi:10.1007/s11250-009-9372-1.
  • Castrillo C, Hervera M, Baucells MD. 2009. Methods for predicting the energy value of pet foods. R Bras Zootec. 38(1):1–14 (supl. especial). doi:10.1590/S1516-35982009001300001.
  • Castro-Bedriñana J, Chirinos-Peinado D. 2020. Digestibility, digestible and metabolizable energy of earthworm meal (Eisenia foetida) included in two levels in guinea pigs (Cavia Porcellus). Adv Sci Technol Eng Syst J. 5(3):171–177. doi:10.25046/aj050323.
  • Castro J, Chirinos D. 2015. Impact of a comprehensive intervention on food security in poor families of Central Highlands of Peru. Food and Public Health. 5(6):213–219. doi:10.5923/j.fph.20150506.02.
  • Castro J, Chirinos D, Calderón J. 2018. Nutritional quality of maca stubble (Lepidium peruvianum Chacón) in guinea pigs. Rev Inv Vet Perú. 29(2):410–418. doi:10.15381/rivep.v29i2.13405.
  • Castro J, Chirinos D, Páucar C. 2017. Alkaline treatment (NaOH) effect in the dry matter and protein digestibility of california bulrush (Scirpus californicus) in guinea pigs (Cavia porcellus). Rev Inv Vet Perú. 28(1):86–91. doi:10.15381/rivep.v28i1.11793.
  • Chung KY, Chang SS, Lee EM, Kim HJ, Park BH, Kwon EG. 2015. Effects of high energy diet on growth performance, carcass characteristics, and blood constituents of final fattening Hanwoo steers. Korean J Agric Sci. 42(3):261–226. doi:10.7744/cnujas.2015.42.3.261.
  • Clemente E, Arbaiza T, Carcelén F, Lucas O, Bazán V. 2003. Evaluación del valor nutricional de la Puya llatensis en la alimentación del cuy (Cavia porcellus). Rev Inv Vet Perú. 14(1):1–6. Available from: https://www.scielo.org.pe/pdf/rivep/v14n1/a01v14n1.
  • Crampton E, Harris L. 1974. Nutrición animal aplicada, 2° edición. Zaragoza, España: Editorial Acribia, 756 pp.
  • ENA. 2017. Encuesta Nacional Agropecuaria 2017. Lima, Peru: Instituto Nacional de Estadística. Available from: https://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Lib1593/.
  • Faber T, Hopkins A, Middelbos I, Price N, Fahey Jr G. 2011. Galactoglucomannan oligosaccharide supplementation affects nutrient digestibility, fermentation end-product production, and large bowel microbiota of the dog. J Anim Sci. 89(1):103–112. doi:10.2527/jas.2010-3028.
  • Fan YF, Yang YY, Yang P, Xia T, Ma YX. 2017. Available energy content, nutrients digestibility of chili meal and effects on performance of growing pigs. Anim Feed Sci Technol. 229:97–105. doi:10.1016/j.anifeedsci.2017.05.001.
  • FEEDNA. 2018. Composición de alimentos y valor nutritivo. Available from: https://www.fundacionfedna.org/tablas-fedna-composicion-alimentos-valor-nutritivo.
  • Félix A, Gabeloni L, Brito C, Oliveira S, Silva A, Maiorka A. 2012. Effect of b-mannanase on the digestibility of diets with different proteín sources in dogs determined by different methodologies. J Anim Sci. 90(9):3060–3067. doi:10.2527/jas.2011-4222.
  • Galyean ML, Cole NA, Tedeschi LO, Branine ME. 2016. Board-invited review: efficiency of converting digestible energy to metabolizable energy and reevaluation of the California net energy system maintenance requirements and equations for predicting dietary net energy values for beef cattle. J Anim Sci. 94(4):1329–1341. doi:10.2527/jas.2015-0223.
  • Guevara P, Claeys T, Janssens GP. 2008. Apparent digestibility in meat-type guinea pigs as determined by total collection or by internal marker. Vet Med (Praha). 53(4):203–206.
  • Hall MB, Eastridge ML. 2014. Carbohydrate and fat: considerations for energy and more. Prof Anim Scient. 30(2):140–149. doi:10.15232/S1080-7446(15)30101-7.
  • Harahap RP, Jayanegara A, Fakhri N. 2018. Evaluation of oil palm fronds using fiber cracking technology combined with Indigofera sp. in ruminant ration by Rusitec. AIP Conf Proc. 2021:050008-1–050008-6. doi:10.1063/1.5062758.
  • James G, Witten d, Hastie T, Tibshirani R. 2013. An introduction to statistical learning, with application in R. 1st ed. Springer Texts in Statistics. New York, Heidelberg, Dordrecht, London: Springer. doi:10.1007/978-1-4614-7138-7
  • Jayanegara A, Ridla M, Nahrowi & Laconi EB. 2019. Estimation and validation of total digestible nutrient values of forage and concentrate feedstuffs. IOP Conf Series Mater Sci Eng, 546, 042016. doi:10.1088/1757-899x/546/4/042016
  • Kassa A. 2019. The different methods of measuring feed digestibility: a review. EC Nutrition. 14(1): 68–74. Available from: https://www.ecronicon.com/ecnu/pdf/ECNU-14-00542.pdf
  • Keys J, Van Soest P, Young E. 1970. Effect of increasing dietary cell wall content on the digestibility of hemicellulose and cellulose in swine and rats. J Anim Sci. 31(6):1172–1177. doi:10.2527/jas1970.3161172x.
  • Kienzle E. 2002. Further developments in the prediction of metabolizable energy in pet food. J Nutr. 132(6):1796–1798. doi:10.1093/jn/132.6.1796S.
  • Laflamme DP. 2001. Determining metabolizable energy content in commercial pet foods. J Anim Physiol a Anim Nutr. 85(7–8):222–230. doi:10.1046/j.1439-0396.2001.00330.x.
  • Lammers PJ, Carlson SL, Zdorkowski GA, Honeyman MS. 2009. Reducing food insecurity in developing countries through meat production: The potential of the guinea pig (Cavia porcellus). Renew Agric Food Syst. 24:155–162. doi:10.1017/S1742170509002543.
  • McDonald P, Edwards RA, Greenhalgh JF, Morgan CA, Sinclair LA, Wilkinson RG. 2010. Animal nutrition, 7th ed. Madrid, España: Prentice Hall-Pearson.
  • Meza G, Cabrera R, Morán J, Meza F, Cabrera C, Meza C, Meza J, Cabanilla M, López F, Pincay J, et al. 2014. Mejora de engorde de cuyes (Cavia porcellus L.) a base de gramíneas y forrajeras arbustivas tropicales en la zona de Quevedo, Ecuador. IDESIA (Chile). 32(3):75–80. doi:10.4067/S0718-34292014000300010.
  • MIDAGRI. 2020. En el 2020 se elevarán las ventas y consumo de cuy. Lima, Peru: Ministerio de Desarrollo Agrario y Riego – Perú. Available from: https://www.gob.pe/institucion/midagri/noticias/76440-en-el-2020-se-elevaran-las-ventas-y-consumo-de-cuy.
  • Moir KW, Yule WJ, Connor JK. 1980. Energy losses in the excreta of poultry: a model for predicting dietary metabolizable energy. Aust J Exp Agric Anim Husb. 20(103):151. doi:10.1071/ea9800151.
  • NAS. 2019. Nutrient requirements of animals collection. Washington, DC: National Academic Press. Available from: https://www.nap.edu/collection/63/nutrient-requirements-of-animals.
  • NRC. 1995. Nutrient requirements of laboratory animals. 4th rev ed. Washington, DC: National Academy Press. doi:10.17226/4758.
  • NRC. 2000. Nutrient requirements of beef cattle: seventh revised edition: update 2000. Washington, DC: National Academy Press.
  • NRC. 2006. Nutrient requirements of dogs and cats. Washington, DC: The National Academies Press.
  • Osorio-Carmona E, Giraldo-Carmona J, Narváez-Solarte W. 2012. Metodologías para determinar la digestibilidad de los alimentos utilizados en la alimentación canina. Vet Zootec. 6(1):87–97.
  • Riaz MQ, Südekum KH, Clauss M, Jayanegara A. 2014. Voluntary feed intake and digestibility of four domestic ruminant species as influenced by dietary constituents: a metaanalysis. Livest Sci. 162:76–85. doi:10.1016/j.livsci.2014.01.009.
  • Rostagno H, Texeira L, Donzele J, Gomez P, De Oliveira R, Lopes D, Ferreira A, Toledo S, Euclides R. 2011. Composición de alimentos y requerimientos nutricionales. Tercera Ediçao: Universidad Federal de Viçosa. 259 p. Available from: https://www.lisina.com.br/arquivos/Geral%20Espa%C3%B1ol.pdf
  • Schofield J, Noonan D, Chen Y, Penson P. 2014. Chapter 12 - Laboratory Animals Regulations and Recommendations for Global Collaborative Research: Australia and New Zealand. In: Javier Guillén, editor. Laboratory Animals. Academic Press; p. 333–376. http://doi.org/10.1016/B978-0-12-397856-1.00012-X.
  • Shi CX, Liu ZY, Shi M, Li P, Zeng ZK, Liu L, Huang CF, Zhu ZP, Li DF. 2015. Prediction of digestible and metabolizable energy content of rice bran fed to growing pigs. Asian Australas. J Anim Sci. 28(5):654–661. doi:10.5713/ajas.140507.
  • Sotelo A, Contreras C, Norabuena E, Castañeda R, van Heurck M, Bullón L. 2016. Digestibilidad y energía digestible de cinco leguminosas forrajeras tropicales. Rev Soc Quím Perú. 82(3):306–314.
  • Spotorno AE, Marin JC, Manriquez G, Valladares JP, Rico E, Rivas C. 2006. Ancient and modern steps during the domestication of guinea pigs (Cavia porcellus L.). J Zool. 270(1):57–62. doi:10.1111/j.1469-7998.2006.00117.x.
  • Stein HH, Sève B, Fuller MF, Moughan PJ, de Lange CF. 2007. Invited review: amino acid bioavailability and digestibility in pig feed ingredients: terminology and application. J Anim Sci. 85(1):172–180. doi:10.2527/jas.2005-742.
  • Supo J. 2016. Soluciones de Análisis Predictivos Para la Investigación. Curso de especialización. Lima, Perú: SAPRE. Bioestadístico.
  • Tshibangu I, Nsahlai V, Kiatoko H, Hornick JL. 2014. Nutritive value of Adenodolichos rhomboideus leaves compared with Leucaena leucocephala and Stylosanthes guianensis forages in indigenous goats in Lubumbashi (DR Congo). Biotechnol Agron Soc Environ. 18(2):165–173.
  • USDA. 2008. Total digestible nutrients and protein per acre produced by five Indiangrass cultivars. Pasture & Hay Planting; CP 512. Available from: https://www.nrcs.usda.gov/Internet/FSE_PLANTMATERIALS/publications/arpmctn 8012.pdf.
  • USDA. 2019. USDA Food Composition Databases. United States Department of Agriculture. Available from: https://ndb.nal.usda.gov/ndb/.
  • Van Amburgh ME, Collao-Saenz EA, Higgs RJ, Ross DA, Recktenwald EB, Raffrenato E, Chase LE, Overton TR, Mills JK, Foskolos A. 2015. The cornell net carbohydrate and protein system: updates to the model and evaluation of version 6.5. J Dairy Sci. 98(9):6361–6380. doi:10.3168/jds.2015-9378.
  • Villalobos L, Sánchez J. 2010. Evaluación agronómica y nutricional del pasto ryegrass perenne tetraploide (Lolium perenne) producido en lecherías de las zonas altas de Costa Rica. II. Valor nutricional. Agronomía Costarricense. 34(1):43–52. Available from: https://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S0377-94242010000100004.
  • Weiss W, Conrad H, Pierre N. 1992. A theoretically-based model for predicting total digestible nutrient values of forages and concentrates. Anim Feed Sci Technol. 39:95–110. doi:10.1016/0377-8401(92)90034-4.
  • Weiss W, Tebbe A. 2019. Estimating digestible energy values of feeds and diets and integrating those values into net energy systems. Trans Anim Sci. 3(3):953–961. doi:10.1093/tas/txy119.