1,083
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The effect of vegetable and animal oils added to different forages and concentrates on the in vitro fermentation parameters in ruminants

ORCID Icon & ORCID Icon
Pages 548-559 | Received 03 Jun 2022, Accepted 02 Aug 2022, Published online: 16 Aug 2022

References

  • Abubakr A, Alimon AR, Yaakub H, Abdullah N, Ivan M. 2014. Effect of feeding palm oil by-products based diets on total bacteria, cellulolytic bacteria and methanogenic archaea in the rumen of goats. PLoS One. 9(4):e95713.
  • Akkaya M. 2018. Fatty acid compositions of sunflowers (Helianthus annuus L.) grown in east Mediterranean region. Rivista Ital Del Sost Grasse. 95:239–247.
  • AOAC. 1995. Association of Official Analytical Chemists. Washington (DC): Association of Official Analytical Chemists.
  • Apajalahti J, Vienola K, Raatikainen K, Holder V, Moran CA. 2019. Conversion of branched-chain amino acids to corresponding isoacids - an in vitro tool for estimating ruminal protein degradability. Front Vet Sci. 6:311. doi:10.3389/fvets.2019.00311.
  • Arnaud E, Relkin P, Pina M, Collignan A. 2004. Characterisation of chicken fat dry fractionation at the pilot scale. Eur J Lipid Sci Technol. 106:591–598. doi:10.1002/ejlt.200400946.
  • Baah J, Ivan M, Hristov MN, Koenig KM, Rode LM, McAllister TA. 2007. Effects of potential dietary antiprotozoal supplements on rumen fermentation and digestibility in heifers. Anim Feed Sci Technol. 137(1–2):126-137. doi:10.1016/j.anifeedsci.2006.11.004
  • Beauchemin KA, McGinn SM, Benchaar C, Holtshausen L. 2009. Crushed sunflower, flax, or canola seeds in lactating dairy cow diets: effects on methane production, rumen fermentation, and milk production. J Dairy Sci. 92(5):2118–2127.
  • Belanche A, de la Fuente G, Newbold CJ. 2015. Effect of progressive inoculation of Fauna-Free sheep with Holotrich protozoa and Total-Fauna on rumen fermentation, microbial diversity and methane emissions. FEMS Microbiol Ecol 362:1–10.
  • Boyne AW, Eadie JM, Raitt K. 1957. The development and testing of a method of counting rumen ciliate protozoa. J Gen Microbiol. 17:414–423. doi:10.1099/00221287-17-2-414.
  • Chantaprasarn N, Wanapat M. 2008. Effects of sunflower oil supplementation in cassava hay based-diets for lactating dairy cows. Asian-Aust J Anim Sci. 21:42–50. doi:10.5713/ajas.2008.60421.
  • Chaves AV, Thompson LC, Iwaasa AD, Scott SL, Olson ME, Benchaar C, Veira DM, McAllister TA. 2006. Effect of pasture type (alfalfa vs. grass) on methane and carbon dioxide production by yearling beef heifers. Can J Anim Sci. 86:409–418. doi:10.4141/A05-081.
  • Chew SC. 2020. Cold-pressed rapeseed (Brassica napus) oil: chemistry and functionality. Food Res Int. 131:108997. doi:10.1016/j.foodres.2020.108997.
  • Çolak Ç, Hasançebi S, Kaya Y. 2020. Determination of high oleic acid property in sunflower by using molecular markers. Anadolu J AARI. 30:57–68. doi:10.18615/anadolu.727207.
  • Danielsson R, Dicksved J, Sun L, Gonda H, Müller B, Schnürer A, Bertilsson J. 2017. Methane production in dairy cows correlates with rumen methanogenic and bacterial community structure. Front Microbiol. 8:226. doi:10.3389/fmicb.2017.00226.
  • Dayani O, Ghorbani GR, Alikhani M, Rahmani HR, Mir PS. 2007. Effects of dietary whole cottonseed and crude protein level on rumen protozoal population and fermentation parameters. Small Rum Res. 69:36–45. doi:10.1016/j.smallrumres.2005.12.007.
  • Delgado B, Bach A, Guasch I, González C, Elcoso G, Pryce JE, Gonzalez-Recio O. 2019. Whole rumen metagenome sequencing allows classifying and predicting feed efficiency and intake levels in cattle. Sci Rep. 9:11. doi:10.1038/s41598-018-36673-w.
  • Dohme F, Machmuller A, Wasserfallen A, Kreuzer M. 2001. Ruminal methanogenesis as influenced by individual fatty acids supplemented to complete ruminant diets. Lett Appl Microbiol. 32:47–51. doi:10.1046/j.1472-765x.2001.00863.x.
  • Doreau M, Ferlay A. 1995. Effect of dietary lipids on nitrogen metabolism in the rumen: a review. Livest Prod Sci. 43:97–110. doi:10.1016/0301-6226(95)00041-I.
  • Ersahince AC, Kara K. 2017. Nutrient composition and in vitro digestion parameters of Jerusalem artichoke (Helianthus tuberosus L.) herbage at different maturity stages in horse and ruminant. J Anim Feed Sci. 26:213–225. doi:10.22358/jafs/76477/2017.
  • Fiorentini G, Carvalho IP, Messana JD, Canesin RC, Castagnino PS, Lage JF, Arcuri PB, Berchielli TT. 2015. Effect of lipid sources with different fatty acid profiles on intake, nutrient digestion and ruminal fermentation of feedlot nellore steers. Asian-Aust J Anim Sci. 28(11):1583–1591. doi:10.5713/ajas.15.0130.
  • Gang G, Chen S, Qiang L, Zhang S, Shao T, Wang C, Wang YX, Xu QF, Huo WJ. 2020. The effect of lactic acid bacteria inoculums on in vitro rumen fermentation, methane production, ruminal cellulolytic bacteria populations and cellulase activities of corn stover silage. J Integr Agric. 19:838–847. doi:10.1016/S2095-3119(19)62707-3.
  • Gastelen SV, Antunes-Fernandes EC, Hettinga KA, Klop G, Alferink SJJ, Hendriks WH, Dijkstra J. 2015. Enteric methane production, rumen volatile fatty acid concentrations, and milk fatty acid composition in lactating Holstein–Friesian cows fed grass silage or corn silage based diets. J Dairy Sci. 98:1915–1927. doi:10.3168/jds.2014-8552.
  • Grummer RR. 1991. Effect of feed on the composition of milk fat. J Dairy Sci. 74:3244–3257. doi:10.3168/jds.S0022-0302(91)78510-X.
  • Hassanat F, Gervais R, Massé DI, Petit HV, Benchaar C. 2014. Methane production, nutrient digestion, ruminal fermentation, N balance, and milk production of cows fed timothy silage or alfalfa silage based diets. J Dairy Sci. 97:6463–6474. doi:10.3168/jds.2014-8069.
  • Huang C, Ge F, Yao X, Guo X, Bao P, Ma X, Wu X, Chu M, Yan P, Liang C. 2021. Microbiome and metabolomics reveal the effects of different feeding systems on the growth and ruminal development of yaks. Front Microbiol. 12:682989. doi:10.3389/fmicb.2021.682989.
  • Ivan M, Mir PS, Koenig KM, Rode LM, Neill L, Entz T, Mir Z. 2001. Effects of dietary sunflower seed oil on rumen protozoa population and tissue concentration of conjugated linoleic acid in sheep. Small Rum Res. 41:215–227. doi:10.1016/S0921-4488(01)00220-6.
  • Jarvis JC, Moore KA. 2010. The role of seedlings and seed bank viability in the recovery of Chesapeake Bay, USA, Zostera marina populations following a large-scale decline. Hydrobiologia. 649:55–68. doi:10.1007/s10750-010-0258-z.
  • Jokic S, Sudar R, Svilovic S, Vidovic S, Bilic M, Velic D, Jurkovic V. 2013. Fatty acid composition of the oil obtained from soybeans by extraction with supercritical carbon dioxide. Czech J Food Sci. 31:116–125.
  • Kara K, Güçlü BK, Baytok E. 2015. Comparison of nutrient composition and antimethanogenic properties of different rosaceae species. J Anim Feed Sci. 24:308–314. doi:10.22358/jafs/65613/2015.
  • Kara K. 2020. Milk urea nitrogen and milk fatty acid compositions in dairy cows with subacute ruminal acidosis. Vet Med-Czech. 65:336–345. doi:10.17221/51/2020-VETMED.
  • Kara K. 2021. Nutrient matter, fatty acids, in vitro gas production and fermentation of herbage and silage quality of yellow sweet clover (Melilotus officinalis L.) at different phenological stages. J Anim Feed Sci. 30(2):128–140. doi:10.22358/jafs/136401/2021.
  • Lin CW, Tsai SW. 2015. Production of biodiesel from chicken wastes by various alcohol-catalyst combinations. J Energy South Africa 26:36–45. doi:10.17159/2413-3051/2015/v26i1a2219
  • Lunsin R, Wanapat M, Yuangklang C, Rowlinson P. 2012. Effect of rice bran oil supplementation on rumen fermentation, milk yield and milk composition in lactating dairy cows. Livest Sci. 145:167–173. doi:10.1016/j.livsci.2012.01.015.
  • Machmüller A. 2006. Medium-chain fatty acids and their potential to reduce methanogenesis in domestic ruminants. Agric Ecosyst Environ, 112(2–3):107–114. doi:10.1016/j.agee.2005.08.010
  • Mancini A, Imperlini E, Nigro E, Montagnese C, Daniele A, Orrù S, Buono P. 2015. Biological and nutritional properties of palm oil and palmitic acid: effects on health. Molecules. 20:17339–17361. doi:10.3390/molecules200917339.
  • Marulanda VF, Anitescu G, Tavlarides LL. 2010. Investigations on supercritical transesterification of chicken fat for biodiesel production from low-cost lipid feedstocks. J Supercrit Fluid. 54:53–60. doi:10.1016/j.supflu.2010.04.001.
  • Mege RA, Manalu W, Kusumorini N, Nasution SH. 2006. Effect of superovulation on piglet production. J Anim Prod. 8:14–18.
  • Menke KH. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim Res Develop. 28:7–55.
  • Menke KH, Raab L, Salewski A, Steingass H, Fritz D, Schneider W. 1979. The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. J Agric Sci. 93:217–222. doi:10.1017/S0021859600086305.
  • Menke, HH, Steingass H. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim Res Develop. 28(1):7–55.
  • Niu H, Xu Z, Yang HE, McAllister TA, Acharya S, Wang Y. 2021. In vitro ruminal fermentation of fenugreek (Trigonella foenum-graecum L.) produced less methane than that of alfalfa (Medicago sativa). Anim Biosci. 34:584–593. doi:10.5713/ajas.20.0114.
  • NRC. 2001. Nutrient requirements of dairy cattle, 7th revised edition. Washington (DC): National Academy Press.
  • O’Brien AM, Navarro-Villa A, Purcell PJ, Boland TM, O’Kiely AP. 2014. Reducing in vitro rumen methanogenesis for two contrasting diets using a series of inclusion rates of different additives. Anim Prod Sci. 54:41–157. doi:10.1071/AN12204.
  • Odongo NE, Or-Rashid MM, Kebreab E, France J, McBride BW. 2007. Effect of supplementing myristic acid in dairy cow rations on ruminal methanogenesis and fatty acid profile in milk. J Dairy Sci. 90(4):1851–1858. doi:10.3168/jds.2006-541
  • Orsavova J, Misurcova L, Ambrozova JV, Vicha R, Mlcek J. 2015. Fatty acids composition of vegetable oils and its contribution to dietary energy intake and dependence of cardiovascular mortality on dietary ıntake of fatty acids. J Mol Sci. 16:12871–12890. doi:10.3390/ijms160612871.
  • Öztürk F. 2021. Determination of seed yield, oil and fatty acid composition of some oil type sunflower (Helianthus annuus L.) genotypes in Diyarbakır conditions. Harran Tarım Gıda Bil Derg. 25:30–40. doi:10.29050/harranziraat.756505.
  • Peña-Saldarriaga LM, Fernández-López J, Pérez-Alvarez J. 2020. Quality of chicken fat by-products: lipid profile and colour properties. Foods. 9:1046. doi:10.3390/foods9081046.
  • Pi Y, Ma L, Pierce KM, Wang H, Xu J, Bu D. 2019. Rubber seed oil and flaxseed oil supplementation alter digestion, ruminal fermentation and rumen fatty acid profile of dairy cows. Animal. 13:2811–2820. doi:10.1017/S175173111900137X.
  • Poulsen M, Schwab C, Borg-Jensen B, Engberg RM, Spang A, Canibe N, Højberg O, Milinovich G, Fragner L, Schleper C, et al. 2013. Methylotrophic methanogenic thermoplasmata implicated in reduced methane emissions from bovine rumen. Nat Commun. 4:1428. doi:10.1038/ncomms2432.
  • Rabee AE, Sayed Alahl AA, Lamara M, Ishaq SL. 2022. Fibrolytic rumen bacteria of camel and sheep and their applications in the bioconversion of barley straw to soluble sugars for biofuel production. PLoS One. 17(1):e0262304. doi:10.3168/jds.S0022-0302(91)78510-X.
  • Raval AP, Patel VR, Sorathıya LM, Patel NB, Sıngh RR. 2021. Effect of dietary inclusion of vegetable oils on nutrient utilization and ruminal fermentation in Surti goats. Indian J Anim Sci. 91:987–990.
  • Rego OA, Rosa HJD, Portugal PV, Franco T, Vouzela CM, Borba AES, Bessa RJB. 2005. The effects of supplementation with sunflower and soybean oils on the fatty acid profile of milk fat from grazing dairy cows. Anim Res. 54 (1):17–24.
  • Soliva CR, Hindrichsen IK, Meile L, Kreuzer M, Machmüller A. 2003. Effects of mixtures of lauric and myristic acid on rumen methanogens and methanogenesis in vitro. Lett Appl Microbiol. 37(1):35–39. doi:10.1046/j.1472-765x.2003.01343.x.
  • Sterk AR. 2011. Ruminal fatty acid metabolism altering rumen biohydrogenation to improve milk fatty acid profile of dairy cows. Wageningen University the Netherlands, 188. [accessed: 02.01.2022]. https://edepot.wur.nl/178582.
  • Van Soest PJ, Robertson JB, Lewis BA. 1991. Methods for dietary fiber, neutral detergent fiber and non starch polysaccharides in relation to animal nutrition. J Dairy Sci. 74:3583–3597. doi:10.3168/jds.S0022-0302(91)78551-2.
  • Váradyová Z, Kišidayová S, Siroka P, Jalč D. 2008. Fatty acid profiles of rumen fluid from sheep fed diets supplemented with various oils and effect on the rumen ciliate population. Czech J Anim Sci. 52:399–406. doi:10.17221/2322-CJAS.
  • Wang J, Wu W, Wang X, Wang M, Wu F. 2015. An effective GC method for the determination of the fatty acid composition in silkworm pupae oil using a two-step methylation process. J Serbian Chem Soc. 80:9–20. doi:10.2298/JSC140401073W.
  • Weld KA, Armentano LE. 2017. The effects of adding fat to diets of lactating dairy cows on total-tract neutral detergent fiber digestibility: a meta-analysis. J Dairy Sci. 100:1766–1779. doi:10.3168/jds.2016-11500.
  • Wu D, Xu L, Tang S, Guan L, He Z, Guan Y, Tan Z, Han X, Zhou C, Kang J, Wang M. 2016. Influence of oleic acid on rumen fermentation and fatty acid formation in vitro. PLoS One. 11(6):e0156835. doi:10.1371/journal.pone.0156835.