1,431
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Histomorphometric traits, microbiota, nutrient digestibility, growth performance, carcass traits and meat quality parameters of chickens fed diets supplemented with different levels of Bacillus protease

ORCID Icon, &
Pages 137-155 | Received 12 Sep 2022, Accepted 16 Dec 2022, Published online: 01 Feb 2023

References

  • Abudabos AM, Alyemni AH, Dafalla YM, Rifat UK. 2017. Effect of organic acid blend and Bacillus subtilis alone or in combination on growth traits, blood biochemical and antioxidant status in broilers exposed to Salmonella typhimurium challenge during the starter phase. J Appl Anim Res. 45(1):538–542. doi:10.1080/09712119.2016.1219665.
  • Adedokun SA, Olojede OC. 2019. Optimizing gastrointestinal integrity in poultry: the role of nutrients and feed additives. Front Vet Sci. 5:348. doi:10.3389/fvets.2018.00348.
  • Ahmed AS, Mustafa MD, Nemat AB, Tarek AE, Khairy AA, Mahmoud MA. 2020. Effect of supplemental serine-protease from Bacillus licheniformis on growth performance and physiological change of broiler chickens. J Appl Anim Res. 48:86–92. doi:10.1080/09712119.2020.1732986.
  • Akinola OS, Onakomaiya AO, Agunbiade JA, Oso AO. 2015. Growth performance, apparent nutrient digestibility, intestinal morphology and carcass traits of broiler chickens fed dry, wet and fermented-wet feed. Livest Sci. 177:103–109. doi:10.1016/j.livsci.2015.04.016.
  • Alaa AB, David LH, Geert G, Adnan AB, Philip F. 2014. Exogenous proteases for meat tenderization. Crit Rev Food Sci Nutr. 54:1012–1031. doi:10.1080/10408398.2011.623247.
  • Alagawany M, Elnesr SS, Farag MR. 2018. The role of exogenous enzymes in promoting growth and improving nutrient digestibility in poultry. Iran J Vet Res. 19:157–164.
  • Alam MJ, Howlider MAR, Pramanik MAH, Haque MA. 2003. Effect of exogenous enzyme in diet on broiler performance. Int J Poult Sci. 2:168–173. doi:10.3923/ijps.2003.168.173.
  • Al-harthi MA. 2016. The efficacy of using olive cake as a by-product in broiler feeding with or without yeast. Ital J Anim Sci. 15:512–520. doi:10.1080/1828051X.2016.1194173.
  • Allouche L, Madani T, Ait Hamouda Z, Boucherit MR, Taleb H, Samah O, Rahmani K, Touabti A. 2015. Effect of addition of exogenous enzymes in hypocaloric diet in broiler chicken on performance, biochemical parameters and meat characteristics. Biotechnol Anim Husb. 31:551–565. doi:10.2298/BAH1504551A.
  • Amerah AM, Romero LF, Awati A, Ravindran V. 2017. Effect of exogenous xylanase, amylase, and protease as single or combined activities on nutrient digestibility and growth performance of broilers fed corn/soy diets. Poult Sci. 96:807–816. doi:10.3382/ps/pew297.
  • Angel CR, Saylor W, Vieira SL, Ward N. 2011. Effects of a monocomponent protease on performance and protein utilization in 7- to 22-day-old broiler chickens. Poult Sci. 90:2281–2286. doi:10.3382/ps.2011-01482.
  • Ani AO, Oyeagu CE. 2012. Response of shaver brown hens to feeds of different sources in the humid tropical environment. Agro-Sci J Trop Agric Food Environ Ext. 11(3):12–23. doi:10.4314/as.v11i3.2.
  • [AOAC] Association of Official Analytical Chemists. 2006. Official methods of analysis. 18th ed. Washington (DC): AOAC. 2263.
  • Apajalahti J, Vienola K. 2016. Interaction between chicken intestinal microbiota and protein digestion. Anim Feed Sci Technol. 221:323–330. doi:10.1016/j.anifeedsci.2016.05.004.
  • Ashie INA, Sorensen TL, Nielsen PM. 2002. Effects of papain and a microbial enzyme on meat proteins and beef tenderness. J Food Sci. 67:2138–2142. doi:10.1111/j.1365-2621.2002.tb09516.x.
  • Ayoola AA, Malheiros RD, Grimes JL, Ferket PR. 2015. Effect of dietary exogenous enzyme supplementation on enteric mucosal morphological development and adherent mucin thickness in Turkeys. Front Vet Sci. 2:45. doi:10.3389/fvets.2015.00045.
  • Badau MH, Nkama I, Jideani AI. 2005. Phytic acid content and hydrochloric acid extractability of minerals in pearl millet as affected by germination time and cultivar. J Food Chem. 92:425–435. doi:10.1016/j.foodchem.2004.08.006.
  • Barletta A. 2011. Introduction: current market and expected developments. In: Bedford MR, Partridge GG, editors. Enzymes in farm animal nutrition. Wallingford: CABI; p. 1–11. doi:10.1079/9781845936747.0001.
  • Bedford MR, Cowieson AJ. 2012. Exogenous enzymes and their effects on intestinal microbiology. Anim Feed Sci Technol. 173:76–85. doi:10.1016/j.anifeedsci.2011.12.018.
  • Biasato I, Ferrocino I, Biasibetti E, Grego E, Dabbou S, Sereno A, Gai F, Gasco L, Schiavone A, Cocolin L, Capucchio MT. 2018. Modulation of intestinal microbiota, morphology and mucin composition by dietary insect meal inclusion in free-range chickens. BMC Vet Res. 14:383. doi:10.1186/s12917-018-1690-y.
  • Brown AT, Cantley S, Gutierrez O, Lemons ME, Wamsley KGS. 2020. Effects of varying diet nutrient density and enzyme inclusion strategy for Ross 708 male broilers under a natural disease challenge. J Appl Poult Res. 29(4):947–976. doi:10.1016/j.japr.2020.09.005.
  • Buyse J, Jassens K, van der Geyten S, van As P, Decuypere E, Darras VM. 2002. Pre-and postprandial changes in plasma hormone and metabolite levels and hepatic deiodinase activities in meal-fed broiler chickens. Br J Nutr. 88:641–653. doi:10.1079/BJN2002741.
  • Campasino A, Williams M, Latham R, Bailey CA, Brown B, Lee JT. 2015. Effect of increasing dried distillers’ with solubles and non-starch polysaccharide degrading enzyme inclusion on growth performance and energy digestibility in broilers. J Appl Poult Res. 24:135–144. doi:10.3382/japr/pfv018.
  • Cardoso DM, Maciel MP, Passos DP, Silva FV, Reis ST, Aiura FS. 2011. Efeito do uso de complexo enzimático em rações para frangos de corte. Arch Zootec Córdoba. 60:1053–1064. doi:10.4321/S0004-05922011000400021.
  • Cerrate S, Ekmay R, England JA, Coon C. 2019. Predicting nutrient digestibility and energy value for broilers. Poult Sci. 98:3994–4007. doi:10.3382/ps/pez142.
  • Cevger Y, Savafl S, Hakan G. 2004. The effect of the sale of whole or cut up chicken meat on enterprise income according to season. Turk J Vet Anim Sci. 28:399–402. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.824.8266&rep=rep1&type=pdf.
  • Chwen LT, Hooi LF, Nguyen TT, Choe DW. 2013. Growth performance, plasma fatty acids, villous height and crypt depth of preweaning piglets fed with medium chain triacylglycerol. Asian Australas J Anim Sci. 26:700–704. doi:10.5713/ajas.2012.12561.
  • Cowieson A, Lu H, Ajuwon K, Knap I, Adeola O. 2017. Interactive effects of dietary protein source and exogenous protease on growth performance, immune competence and jejunal health of broiler chickens. Anim Prod Sci. 57(2):252–261. doi:10.1071/AN15523.
  • Cowieson AJ. 2010. Strategic selection of exogenous enzymes for corn/soy-based poultry diets. J Poult Sci. 47:1–7. doi:10.2141/jpsa.009045.
  • Cowieson AJ, Adeola O. 2008. Carbohydrases, protease, and phytase have an additive beneficial effect in nutritionally marginal diets for broiler chicks. Poult Sci. 87:1860–1867. doi:10.1093/ps/84.12.1860.
  • Cowieson AJ, Ravindran V. 2008. Effect of exogenous enzymes in corn-based diets varying in nutrient density for young broilers: growth performance and digestibility of energy, minerals and amino acids. Br Poult Sci. 49:37–44. doi:10.1080/00071660701812989.
  • Cowieson AJ, Roos FF. 2013. Bio-efficacy of a mono-component protease in the diets of pigs and poultry: a meta-analysis of effect on ileal amino acid digestibility. J Appl Anim Nutr. 2:1–8. doi:10.1017/jan.2014.5.
  • Cowieson AJ, Zaefarian F, Knap I, Ravindran V. 2017. Interactive effects of dietary protein concentration, a mono-component exogenous protease and ascorbic acid on broiler performance, nutritional status and gut health. Anim Prod Sci. 57(2):1058–1068. doi:10.1071/AN15740.
  • Dalólio FS, Moreira J, Vaz DP, Albino LFT, Valadares LR, Pires AV, Pinheiro SRF. 2016. Exogenous enzymes in diets for broilers. Rev Braz Saúde Prod Anim Salvador. 17:149–161. doi:10.1590/S1519-99402016000200003.
  • Dalólio FS, Vaz DP, Moreira J, Albino LFT, Valadares LR. 2015. Carcass characteristics of broilers fed enzyme complex. Biotechnol Anim Husb. 31:153–162. doi:10.2298/BAH1502153D.
  • Daria P, Anastasia K, Natalya R, Ayslu M, Margarita S. 2020. Effect of Bacillus pumilus 3-19 protease on growth parameters and gut microbiome of broiler chickens. E3S Web Conf. 222. doi:10.1051/e3sconf/202022202051.
  • de Carvalho NM, Oliveira DL, Saleh MAD, Pintado ME, Madureira AR. 2021. Importance of gastrointestinal in vitro models for the poultry industry and feed formulations. Anim Feed Sci Technol. 271:114730. doi:10.1016/j.anifeedsci.2020.114730.
  • de Coca-Sinova A, Valencia DG, JiménezMoreno E, Lázaro R, Mateos GG. 2008. Apparent ileal digestibility of energy, nitrogen, and amino acids of soybean meals of different origin in broilers. Poult Sci. 87:2613–2623. doi:10.3382/ps.2008-00182.
  • Delezie E, Swennen Q, Buyse J, Decuypere E. 2007. The effect of feed withdrawal and crating density in transit on metabolism and meat quality of broilers at slaughter weight. Poult Sci. 86:1414–1423. doi:10.1093/ps/86.7.1414.
  • Dessimoni GV, Dalólio FS, Moreira J, Teixeira LV, Bertechini AG, Hermes RG. 2019. Protease supplementation under amino acid reduction in diets formulated with different nutritional requirements for broilers. Braz J Poult Sci. 21:1–8. doi:10.1590/1806-9061-2017-0707.
  • Dosković V, Bogosavljević-Bosković S, Pavlovski Z, Milošević B, Škrbić Z, Rakonjac S. 2013. Enzymes in broiler diets with special reference to protease. World’s Poult Sci J. 69:343–360. doi:10.1017/S0043933913000342.
  • Douglas MW, Parsons CM, Bedford MR. 2000. Effect of various soybean meal sources and Avizyme on chick growth performance and ileal digestible energy. J Appl Poult Res. 9:74–80. doi:10.1093/japr/9.1.74.
  • du Plessis RE, van Rensburg CJ. 2014. Carbohydrase and protease supplementation increased performance of broilers fed maize-soybean-based diets with restricted metabolizable energy content. S Afr J Anim Sci. 44:262–270. doi:10.4314/sajas.v44i3.8.
  • Ebrahimzadeh SKB, Farhoomand NP, Aghjehgheshlagh FM. 2018. Effects of exogenous tannase enzyme on growth performance, antioxidant status, immune response, gut morphology and intestinal microflora of chicks fed grape pomace. S Afr J Anim Sci. 48:1–18. doi:10.4314/sajas.v48i1.2.
  • Engberg RM, Hedemann MS, Steenfeldt S, Jensen BB. 2005. Influence of whole wheat and xylanase on broiler performance and microbial composition and activity in the digestive tract. Poult Sci. 83:925–938. doi:10.1093/ps/83.6.925.
  • Ensari A, Marsh MN. 2018. Exploring the villus. Gastroenterol Hepatol Bed Bench. 11:181–190.
  • Erdaw MM, Perez-Maldonado RA, Iji PA. 2019. Protease and phytase supplementation of broiler diets in which soybean meal is partially or completely replaced by raw full-fat soybean. S Afr J Anim Sci. 49:455–467. doi:10.4314/sajas.v49i3.6.
  • Fan P, Li L, Rezaei A, Eslamfam S, Che D, Ma X. 2015. Metabolites of dietary protein and peptides by intestinal microbes and their impacts on gut. Curr Protein Pept Sci. 16:646–654. doi:10.2174/1389203716666150630133657.
  • Fatufe AA, Timmler R, Rodehutscord M. 2004. Response to lysine intake in composition of body weight gain and efficiency of lysine utilization of growing male chickens from two genotypes. Poult Sci. 83:1314–1324. doi:10.1093/ps/83.8.1314.
  • Freitas DM, Vieira SL, Angel CR, Favero A, Maiorka A. 2011. Performance and nutrient utilization of broilers fed diets supplemented with a novel mono component protease. J Appl Poult Res. 20:347–352. doi:10.3382/japr.2010-00295.
  • Fru-Nji F, Kluenter AM, Fischer M, Pontoppidan K. 2011. A feed serine protease improves broiler performance and energy digestibility. J Poult Sci. 48:239–246. doi:10.2141/jpsa.011035.
  • Fuller MF. 2004. The encyclopedia of farm animal nutrition. Wallingford, UK: CAB International Publishing. 10.1079/9780851993690.0000
  • Gao F, Jiang Y, Zhou GH, Han ZK. 2008. The effects of xylanase supplementation on performance, characteristics of the gastrointestinal tract, blood parameters and gut microflora in broilers fed on wheat-based diets. Anim Feed Sci Technol. 142:173–184. doi:10.1016/j.anifeedsci.2007.07.008.
  • Gaudier E, Rival M, Buisine MP, Robineau I, Hoebler C, Hoebler C. 2009. Butyrate enemas upregulate muc genes expression but decrease adherent mucus thickness in mice colon. Physiol Res. 58:111–119. doi:10.33549/physiolres.931271.
  • Gervais N, Da-Hye K, Chang-Won K, Kyung-Rae K, Yong-Jin J, Sang-Rak L, Kyung-Woo L. 2019. Effects of low-protein diets and exogenous protease on growth performance, carcass traits, intestinal morphology, cecal volatile fatty acids and serum parameters in broilers. Animals. 9:226. doi:10.3390/ani9050226.
  • Ghazi S, Rooke JA, Galbraith H, Bedford MR. 2002. The potential for the improvement of the nutritive value of soya-bean meal by different proteases in broiler chicks and broiler cockerels. Br Poult Sci. 43:70–77. doi:10.1080/00071660120109935.
  • Goldflus F, Ceccantini M, Santos W. 2006. Amino acid content of soybean samples collected in different Brazilian states – harvest 2003/2004. Braz J Poult Sci. 8:105–111. doi:10.1590/S1516-635X2006000200006.
  • Gopinger E, Xavier EG, Lemes JS, Moraes PO, Elias MC, Roll VFB. 2014. Carcass yield and meat quality in broilers fed with canola meal. Br Poult Sci. 55:817–823. doi:10.1080/00071668.2014.980394.
  • Haihan Z, Dongfeng L, Lingbin L, Ling X, Mo Z, Xi H, Yang L. 2019. Cellular composition and differentiation signaling in chicken small intestinal epithelium. Animals. 9:870. doi:10.3390/ani9110870.
  • Hajati H. 2010. Effects of enzyme supplementation on performance, carcass characteristics, carcass composition and some blood parameters of broiler chicken. Am J Anim Vet Sci. 5:221–227. doi:10.3844/ajavsp.2010.221.227.
  • Hajati H, Rezaei M, Sayyahzadeh H. 2009. The effects of enzyme supplementation on performance, carcass characteristics and some blood parameters of broilers fed on corn-soybean meal-wheat diets. Int J Poult Sci. 8:1199–1205. doi:10.3923/ijps.2009.1199.1205.
  • Hollingsworth MA, Swanson BJ. 2004. Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer. 4:45–60.
  • Horvatovic MP, Glamocic D, Zikic D, Hadnadjev TD. 2015. Performance and some intestinal functions of broilers fed diets with different inclusion levels of sunflower meal and supplemented or not with enzymes. Braz J Poult Sci. 17:25–30. doi:10.1590/1516-635x170125-30.
  • Hubner K, Vahjen W, Simon O. 2002. Bacterial responses to different dietary cereal type and xylanase supplementation in the intestine of broiler chicken. Arch Anim Nutr. 56:167–187. doi:10.1080/00039420214191.
  • Hussain M, Mirza MA, Nawaz H, Asghar M, Ahmed G. 2019. Effect of exogenous protease, Mannanase and xylanase supplementation in corn and Hi protein corn DDGS based diets on growth performance, intestinal morphology and nutrients digestibility in broiler chickens. Braz J Poult Sci. 21:1–10. doi:10.1590/1806-9061-2019-1088.
  • Isaksen MF, Cowieson AJ, Kragh KM. 2010. Starch- and protein-degrading enzymes: biochemistry, enzymology and characteristics relevant to animal feed use. In: Bedford MR, Partridge GG, editors. Enzymes in farm animal nutrition. 2nd ed. Oxfordshire: CAB International; p. 85–95.
  • Ivana P, Maja M, Mirela P, Ksenija M, Valerija B, Ivan M, Matija D. 2019. Intestinal morphology in broiler chickens supplemented with propolis and bee pollen. Animals. 9:301. doi:10.3390/ani9060301.
  • Jeferson ML, Claire NS, Eliza JL, Robert DC, Todd RC, Michael JA. 2020. Effect of supplemental protease on growth performance and excreta microbiome of broiler chicks. Microorganisms. 2020(8):475. doi:10.3390/microorganisms8040475.
  • Jha R, Das R, Oak S, Mishra P. 2020. Probiotics (direct-fed microbials) in poultry nutrition and their effects on nutrient utilization, growth and laying performance, and gut health: a systematic review. Animals. 10:1863. doi:10.3390/ani10101863.
  • Jha R, Mishra P. 2021. Dietary fiber in poultry nutrition and their effects on nutrient utilization, performance, gut health, and on the environment: a review. J Anim Sci Biotechnol. 12:51. doi:10.1186/s40104-021-00576-0.
  • Jozefiak D, Rutkowski A, Kaczmarek S, Jensen BB, Engberg RM, Hojbjerg O. 2010. Effect of β-glucanase and xylanase supplementation of barley- and rye-based diets on caecal microbiota of broiler chickens. Br Poult Sci. 51:546–557. doi:10.1080/00071668.2010.507243.
  • Kaczmarek SA, Rogiewicz A, Mogielnicka M, Rutkowski A, Jones RO, Slominski BA. 2014. The effect of protease, amylase, and nonstarch polysaccharide-degrading enzyme supplementation on nutrient utilization and growth performance of broiler chickens fed corn-soybean meal-based diets. Poult Sci. 93:1745–1753. doi:10.3382/ps.2013-03739.
  • Kai Y. 2021. Intestinal villus structure contributes to even shedding of epithelial cells. Biophys J. 120:699–710. doi:10.1016/j.bpj.2021.01.003.
  • Kalmendal R, Tauson R. 2012. Effects of a xylanase and protease, individually or in combination, and an. ionophore coccidiostat on performance, nutrient utilization, and intestinal morphology in broiler chickens fed a wheat soybean meal-based diet. Poult Sci. 91:1387–1393. doi:10.3382/ps.2011-02064.
  • Kamel NF, Ragaa M, El-Banna RA, Mohameda FF. 2015. Effects of a monocomponent protease on performance parameters and protein digestibility in broiler chickens. Agric Agric Sci Procedia. 6:216–225. doi:10.1016/j.aaspro.2015.08.062.
  • Kamran Z, Sarwar M, Nisa M, Nadeem MA, Mahmood S, Babar ME, Ahmed S. 2008. Effect of low-protein diets having constant energy-to-protein ratio on performance and carcass characteristics of broiler chickens from one to thirty-five days of Age. Poult Sci. 87:468–474. doi:10.3382/ps.2007-00180.
  • Kanagaraju P, Rathnapraba S, Churchil R, Madhan Kumar N, Swapnil S. 2019. Nutritional interventions to improve breast meat yield in broilers – review. Int J Livest Res. 9:49–61. doi:10.5455/ijlr.20170911084640.
  • Kaunitz JD, Akiba Y. 2019. Control of intestinal epithelial proliferation and differentiation: the microbiome, enteroendocrine L cells, telocytes, enteric nerves, and GLP, too. Dig Dis Sci. 64:2709–2716. doi:10.1007/s10620-019-05778-1.
  • Kaygisiz F, Cevger Y. 2010. Effects of marketing chicken meat as a whole or cut up on enterprise income. Turk J Vet Anim Sci. 34:17–23. doi:10.3906/vet-0709-24.
  • Khan R, Naz S. 2013. The application of probiotics in poultry production. World’s Poult Sci J. 69(3):621–632. doi:10.1017/S0043933913000627.
  • Khan SH, Iqbal J. 2016. Recent advances in the role of organic acids in poultry nutrition. J Appl Anim Res. 44:359–369.
  • Khan SH, Sarder R, Siddique B. 2006. Influence of enzyme on performance of broiler fed sunflower corn based diets. Pak Vet J. 26:109–114.
  • Khattak FM, Pasha TN, Hayat Z, Mahmud A. 2006. Enzymes in poultry nutrition. J Anim Plant Sci. 16:1–7.
  • Kiarie E, Romero LF, Ravindran V. 2014. Growth performance, nutrient utilization, and digesta characteristics in broiler chickens fed corn or wheat diets without or with supplemental xylanase. Poult Sci. 93:1186–1196. doi:10.3382/ps.2013-03715.
  • Kim JJ, Khan WI. 2013. Goblet cells and mucins: role in innate defense in enteric infections. Pathogens. 2:55–70.
  • Kim YJ, Kim TH, Song MH, An JS, Yun W, Lee JH, Oh HJ, Lee JS, Kim GM, Kim HB, Cho JH. 2020. Effects of different levels of crude protein and protease on nitrogen utilization, nutrient digestibility, and growth performance in growing pigs. J Anim Sci Technol. 62(5):659–667. doi:10.5187/jast.2020.62.5.659.
  • Koc H, Samli A, Okur M, Akyurek OH, Senkoylu N. 2010. Effects of saccharomyses cerevisiae and / or Mannan Oligosaccharides on performance, blood parameters and intestinal microbiota of broiler chicks. Bulg J Agric Sci. 16:643–650.
  • Kocher A, Choct M, Porter MD, Broz J. 2002. Effects of feed enzymes on nutritive value of soyabean meal fed to broilers. Br Poult Sci. 43:54–63. doi:10.1080/00071660120109890.
  • Law FL, Zulkifli I, Soleimani AF, Liang JB, Awad EA. 2018. The effects of low-protein diets and protease supplementation on broiler chickens in a hot and humid tropical environment. Asian-Australas J Anim Sci. 31:1291–1300. doi:10.5713/ajas.17.0581.
  • Lee SA, Bedford MR, Walk CL. 2018. Meta-analysis: explicit value of mono-component proteases in monogastric diets. Poult Sci. 97:2078–2085. doi:10.3382/ps/pey042.
  • Leeming ER, Johnson AJ, Spector TD, Le Roy CI. 2019. Effect of diet on the gut microbiota: rethinking intervention duration. Nutrients. 11:2862. doi:10.3390/nu11122862.
  • Lemme A, Ravindran V, Bryden WL. 2004. Ileal digestibility of amino acids in feed ingredients for broilers. World’s Poult Sci J. 60:423–437. doi:10.1079/WPS200426.
  • Lewis K, Lutgendorff F, Phan V, Söderholm JD, Sherman PM, McKay DM. 2010. Enhanced translocation of bacteria across metabolically stressed epithelia is reduced by butyrate. Inflamm Bowel Dis. 16:1138–1148. doi:10.1002/ibd.21177.
  • Liisa A, Andrus S, van der Post S, Ana MRP, Anna E, Andre S, Fredrik B, Malin EVJ, Gunnar CH. 2020. Cell Rep. 30:1077–1087. doi:10.1016/j.celrep.2019.12.068.
  • Liu SY, Sell PH, Court SG, Cowieson AJ. 2013. Protease supplementation of sorghum-based diets enhances amino acid digestibility coefficients in four small intestinal sites and accelerates their rates of digestion. Anim Feed Sci Technol. 183:175–183. doi:10.1016/j.anifeedsci.2013.05.006.
  • Louis P, Flint HJ. 2009. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett. 294:1–8. doi:10.1111/j.1574-6968.2009.01514.x.
  • Luo D, Yang F, Yang X, Yao J, Shi B, Zhou Z. 2009. Effects of xylanase on performance, blood parameters, intestinal morphology, microflora and digestive enzyme activities of broilers fed wheat-based diets. Asian-Australas J Anim Sci. 22:1288–1295. doi:10.5713/ajas.2009.90052.
  • Madhusankha GDMP, Thilakarathna RCN. 2021. Meat tenderization mechanism and the impact of plant exogenous proteases: a review. Arab J Chem. 14:102967. doi:10.1016/j.arabjc.2020.102967.
  • Mahmood T, Mirzaa MA, Nawaza H, Shahid M. 2017. Effect of different exogenous proteases on growth performance, nutrient digestibility, and carcass response in broiler chickens fed poultry by-product meal-based diets. Livest Sci. 200:71–75. doi:10.1016/j.livsci.2017.04.009.
  • Marapana R. 2016. Effect of different dress weight categories on yield part percentage and relationship of live and dress weight of broiler carcasses slaughter at different conditions. J Food Sci Technol Nepal. 9:31–38. doi:10.3126/jfstn.v9i0.14760.
  • Markovic R, Sefer D, Krstic M, Petrujkic B. 2009. Effect of different growth promoters on broiler performance and gut morphology. Arch Med Vet Sci. 41:163–169. doi:10.4067/S0301-732X2009000200010.
  • Markowiak P, Śliżewska K. 2017. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients. 9:1021. doi:10.3390/nu9091021.
  • Masey O'Neill HV, Smith JA, Bedford MR. 2014. Multicarbohydrase enzymes for non-ruminants. Asian-Australas J Anim Sci. 27:290–301. doi:10.5713/ajas.2013.13261.
  • Medhi D, Ahmed HF, Konwar BK, Chakravarty P. 2003. Effect of dietary ajar seed meal with or without multienzyme supplementation on voluntary feed intake and nutrients digestibility in broilers. Indian Vet J. 80:667–671.
  • Mohammadigheisar M, Kim IH. 2018. Addition of a protease to low crude protein density diets of broiler chickens. J Appl Anim Res. 46(1):1377–1381. doi:10.1080/09712119.2018.1512862.
  • Moosavi M, Chaji M, Boujarpour M, Rahimnahal S, Kazemi AR. 2012. Effect of different levels of energy and protein with constant ratio on performance and carcass characteristics in broiler chickens. Int Res J Appl Basic Sci. 3(12):2485–2488.
  • Morrison DJ, Preston T. 2016. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 7:189–200. doi:10.1080/19490976.2015.1134082.
  • Munyaka PM, Nandha NK, Kiarie E, Nyachoti CM, Khafipour E. 2016. Impact of combined β-glucanase and xylanase enzymes on growth performance, nutrients utilization and gut microbiota in broiler chickens fed corn or wheat-based diets. Poult Sci. 95:528–540. doi:10.3382/ps/pev333.
  • Mushtag TS, Ahmad M, Mirza G, Ahmad MA, Noreen T. 2009. Influence of sunflower meal based diet supplemented with exogenous enzyme and digestible lysine on performance, digestibility and carcass response of broiler chickens. Anim Feed Sci Technol. 149:275–286. doi:10.1016/j.anifeedsci.2008.06.008.
  • Nabizadeh A, Golian A, Hassanabadi A, Zerehdaran S. 2017. Effects of nutrient density and exogenous enzymesin starter diet on performance, intestinal microflora, gut morphology and immune response of broiler chickens. Braz J Poult Sci. 19:509–518. doi:10.1590/1806-9061-2017-0501.
  • Ndazigaruye G, Kim D-H, Kang C-W, Kang K-R, Joo Y-J, Lee S-R, Lee K-W. 2019. Effects of low-protein diets and exogenous protease on growth performance, carcass traits, intestinal morphology, cecal volatile fatty acids and serum parameters in broilers. Animals. 9:226. doi:10.3390/ani9050226.
  • Neves DP, Banhazi TM, Nääs IA. 2014. Feeding behaviour of broiler chickens: a review on the biochemical characteristics. Rev Bras Ciênc Avíc. 16:1–16. doi:10.1590/1516-635x16021-16.
  • NRC. 1994. Nutrient requirements of poultry, 9th rev. ed. Washington, DC: National Academy Press. p. 176.
  • Odetallah NH, Wang JJ, Garlich JD, Shih JC. 2003. Keratinase in starter diets improves growth of broiler chicks. Poult Sci. 82:664–670. doi:10.1093/ps/82.4.664.
  • Odetallah NH, Wang JJ, Garlich JG, Shih JC. 2005. Versazyme supplementation of broiler diets improves market growth performance. Poult Sci. 84:858–864. doi:10.1093/ps/84.6.858.
  • O'Keefe SJD. 2016. Diet, microorganisms and their metabolites, and colon cancer. Nat Rev Gastroenterol Hepatol. 13:691–706. doi:10.1038/nrgastro.2016.165.
  • Olukosi O, Beeson L, Englyst K, Romero L. 2015. Effects of exogenous proteases without or with carbohydrases on nutrient digestibility and disappearance of non-starch polysaccharides in broiler chickens. Poult Sci. 94:2662–2669. doi:10.3382/ps/pev260.
  • Omojola AB, Otunla TA, Olusola OO, Adebiyi OA, Ologhobo AD. 2014. Performance and carcass characteristics of broiler chicken fed soybean and sesame/soybean based diets supplemented with or without microbial phytase. Am J Exp Agric. 4:1637–1648. doi:10.9734/ajea/2014/10513.
  • Opoku EY, Classen HL, Scott TA. 2015. Evaluation of inclusion level of wheat distillers dried grains with solubles with and without protease or β-mannanase on performance and water intake of Turkey hens. Poult Sci. 94:1600–1610. doi:10.3382/ps/pev088.
  • Oyeagu CE, Ani AO, Egbu CF, Akpolu ES, Iwuchukwu JC, Omumuabuike JN. 2015. Performance of broiler finisher birds fed Toasted Bambara nut (Vigna subterranean (L) verdc) Offal with supplementary enzyme. Asian J Sci Technol. 6:934–939.
  • Oyeagu CE, Ani AO, Egbu CF, Udeh FU, Omumuabuike JN, Iwuchukwu JC. 2016. The effect of feeding toasted Bambara nut (Vigna subterranea (L) verdc) offal and supplementary enzyme on performance of broiler chicks. J Trop Agric (Trinidad). 93:271–283.
  • Oyeagu CE, Mlambo V, Muchenje V. 2019a. Effect of dietary Aspergillus xylanase on nutrient digestibility and utilization, growth performance and size of internal organs in broiler chickens offered maize-soybean meal based-diets. Pak J Nutr. 18:852–865. doi:10.3923/pjn.2019.852.865.
  • Oyeagu CE, Mlambo V, Muchenje V, Marume U. 2019b. Effect of dietary supplementation of Aspergillus xylanase in broiler chicken. Iran J Appl Anim Sci. 9:693–708.
  • Parsaie S, Shariatmadari F, Zamiri MJ, Khajeh K. 2007. Influence of wheat-based diets supplemented with xylanas, bile acid and antibiotics on performance, digestive tract measurements and gut morphology of broilers compared with a maize-based diet. Br Poult Sci. 48:594–600. doi:10.1080/00071660701615788.
  • Parviz A, Javad G, Heydar Z, Zohre S, Hassan K, Mohammad RED. 2018. Effect of probiotic and vinegar on growth performance, meat yields, immune responses, and small intestine morphology of broiler chickens. Ital J Anim Sci. 17(3):675–685. doi:10.1080/1828051X.2018.1424570.
  • Peng L, Li ZR, Green RS, Holzman IR, Lin J. 2009. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J Nutr. 139:1619–1625. doi:10.3945/jn.109.104638.
  • Petracci M, Baéza E. 2011. Harmonization of methodologies for the assessment of poultry meat quality features. World’s Poult Sci J. 67:137–151. doi:10.1017/S0043933911000122.
  • Petracci M, Betti M, Bianchi M, Cavani C. 2004. Color variation and characterization of broiler breast meat during processing in Italy. Poult Sci. 83:2086–2092. doi:10.1093/ps/83.12.2086.
  • Pickard JM, Zeng MY, Caruso R, Núñez G. 2017. Gut microbiota: role in pathogen colonization, immune responses, and inflammatory disease. Immunol Rev. 279:70–89. doi:10.1111/imr.12567.
  • Qaid MM, Abdelrahman MM. 2016. Role of insulin and other related hormones in energy metabolism – a review. Cogent Food Agric. 2:1267691. doi:10.1080/23311932.2016.1267691.
  • Rada V, Lichovníková M, Foltyn M, Šafařík I. 2016. The effect of exogenous protease in broiler diets on the apparent ileal digestibility of amino acids and on protease activity in jejunum. Acta Univ Agric Silvic Mendel Brun. 64(183):5. doi:10.11118/actaun201664051645.
  • Rizz C, Marangon A, Chiericat GM. 2007. Effects of genotype on slaughtering performance and meat physical and sensory characteristics of organic laying chickens. Poult Sci. 86:128–135. doi:10.1093/ps/86.1.128.
  • Rodrigues I, Choct M. 2018. The foregut and its manipulation via feeding practices in the chicken. Poult Sci. 97:3188–3206. doi:10.3382/ps/pey191.
  • Rojas OJ, Stein HH. 2017. Processing of ingredients and diets and effects on nutritional value for pigs. J Anim Sci Biotechnol. 8:48. doi:10.1186/s40104-017-0177-1.
  • Sanka YD, Mbanga SH. 2014. Evaluation of Tanzanian local chicken reared under intensive and semi-intensive systems: II. Meat quality attributes. Lives Res Rural Dev. 26:78–81.
  • SAS. 2010. SAS users guide: statistics, version 9.3. Cary (NC): SAS Institute.
  • Sayehban P, Seidavi A, Dadashbeiki M, Ghorbani A, Araújo WAG, Albino LFT. 2015. Effects of different dietary levels of two types of olive pulp and exogenous enzyme supplementation on the gastrointestinal tract size, immunology and hematology of broilers. Braz J Poult Sci. 17:73–85. doi:10.1590/1516-635XSPECIALISSUENutrition-PoultryFeedingAdditives073-086.
  • Sayehban P, Seidavi A, Dadashbeiki M, Ghorbani A, Araújo WAG, Albino LFT. 2016. Effects of different levels of two types of olive pulp with or without exogenous enzyme supplementation on broiler performance and economic parameters. Braz J Poult Sci. 18:489–499. doi:10.1590/1806-9061-2015-0060.
  • Schoenfeld BJ, Aragon AA. 2018. How much protein can the body use in a single meal for muscle-building? Implications for daily protein distribution. J Int Soc Sports Nutr. 15:10. doi:10.1186/s12970-018-0215-1.
  • Schweihofer JP. 2011. Carcass dressing percentage and cooler shrink. Michigan State University Extension. https://www.canr.msu.edu/news/carcass_dressing_percentage_and_cooler_shrink.
  • Scott TA. 2002. Impact of wet feeding wheat-based diets with or without enzyme on broiler chick performance. Can J Anim Sci. 82:409–417.
  • Selle PH, Cadogan DJ, Ru YJ, Partridge GG. 2010. Impact of exogenous enzymes in sorghum or wheat based broiler diets on nutrient utilization and growth performance. Int J Poult Sci. 9:53–58. doi:10.3923/ijps.2010.53.58.
  • Selle PH, Liu SY, Cai J, Cowieson AJ. 2013. Steam-pelleting temperatures, grain variety, feed form and protease supplementation of mediumly ground, sorghum-based broiler diets: influences on growth performance, relative gizzard weights, nutrient utilisation, starch and nitrogen digestibility. Anim Prod Sci. 53:378–387. doi:10.1071/AN12363.
  • Shakouri MD, Iji PA, Mikkelsen LL, Cowieson AJ. 2008. Intestinal function and gut microflora of broiler chickens as influenced by cereal grains and microbial enzyme supplementation. J Anim Physiol Anim Nutr. 93:647–658. doi:10.1111/j.1439-0396.2008.00852.x.
  • Silveira MHD, Usso JTZ, Rossi P, Rutz F, Anciuti MA, Zauk NF, Ribeiro CLG, Brum PAR, Nunes JK. 2010. Efeito da peletização em dietas contendo complexo enzimático para frangos de corte. Ciência Animal Brasileira. 11:326–333. doi:10.5216/cab.v11i2.3846.
  • Sobolewska A, Bogucka J, Dankowiakowska A, Elminowska-Wenda G, Stadnicka K, Bednarczyk M. 2017. The impact of synbiotic administration through in ovo technology on the microstructure of a broiler chicken small intestine tissue on the 1st and 42nd day of rearing. J Anim Sci Biotechnol. 8:61. doi:10.1186/s40104-017-0193-1.
  • Staley C, Weingarden AR, Khoruts A, Sadowsky MJ. 2017. Interaction of gut microbiota with bile acid metabolism and its influence on disease states. Appl Microbiol Biotechnol. 101:47–64. doi:10.1007/s00253-016-8006-6.
  • Steel RGD, Torrie JH. 1980. Principles and procedures of statistics. A biometric approach. 2nd ed. New York (NY): McGraw-Hill Publishers.
  • Sudhir Y, Rajesh J. 2019. Strategies to modulate the intestinal microbiota and their effects on nutrient utilization, performance, and health of poultry. J Anim Sci Biotechnol. 10:1–11. doi:10.1186/s40104-018-0310-9.
  • Sugiharto S, Ranjitkar S. 2019. Recent advances in fermented feeds towards improved broiler chicken performance, gastrointestinal tract microecology and immune responses: a review. Animal Nutrition. 5(1):1–10. doi:10.1016/j.aninu.2018.11.001.
  • Tejeda OJ, Kim WK. 2021. Role of dietary fiber in poultry nutrition. Animals. 11:461. doi:10.3390/ani11020461.
  • Tuohy KM, Ziemer CJ, Klinder A, Knobel Y, Pool-Zobel BL, Gibson GR. 2002. A human volunteer study to determine the prebiotic effects of lactulose powder on human colonic micro-biota. Microb Ecol Health Dis. 14:165–173. doi:10.1080/089106002320644357.
  • Van der Wielen PW, Biesterveld S, Notermans S, Hofstra H, Urlings BAP, van Knapen F. 2000. Role of volatile fatty acids in development of the cecal microflora in broiler chickens during growth. J Appl Environ Microbiol. 66:2536–2540. doi:10.1128/AEM.66.6.2536-2540.2000.
  • Vu DH, Wainaina S, Taherzadeh MJ, Åkesson D, Ferreira JA. 2021. Production of polyhydroxyalkanoates (PHAs) by Bacillus megaterium using food waste acidogenic fermentation-derived volatile fatty acids. Bioengineered. 12(1):2480–2498. doi:10.1080/21655979.2021.1935524.
  • Walk CL, Juntunen K, Paloheimo M, Ledoux DR. 2019. Evaluation of novel protease enzymes on growth performance and nutrientdigestibility of poultry: enzyme dose response. Poult Sci. 98:5525–5532. doi:10.3382/ps/pez299.
  • Wang ZR, Qiao SY, Lu WQ, Li DF. 2005. Effects of enzyme supplementation on performance, nutrient digestibility, gastrointestinal morphology, and volatile fatty acid profiles in the hindgut of broilers fed wheat-based diets. Poult Sci. 84:875–881. doi:10.1093/ps/84.6.875.
  • Werner C, Janisch S, Kuembet U, Wicke M. 2009. Comparative study of the quality of broiler and Turkey meat. Br Poult Sci. 50:318–324. doi:10.1080/00071660902806939.
  • Wexler HM. 2007. Bacteroides: the good, the bad, and the nitty-gritty. Clin Microbiol Rev. 20:593–621. doi:10.1128/CMR.00008-07.
  • Wilfarta A, Montagne L, Simmins H, Noblet J, van Milgen H. 2007. Digesta transit in different segments of the gastrointestinal tract of pigs as affected by insoluble fibre supplied by wheat bran. Br J Nutr. 98:54–62. doi:10.1017/S0007114507682981.
  • Wu QJ, Zhou YM, Wu YN, Wang T. 2013. Intestinal development and function of broiler chicken on diets supplemented with clinoptilolite. Asian Australas J Anim Sci. 26:987–994. doi:10.5713/ajas.2012.12545.
  • Wu S, Choct M, Pesti G. 2020. Historical flaws in bioassays used to generate metabolizable energy values for poultry feed formulation: a critical review. Poult Sci. 99:385–406. doi:10.3382/ps/pez511.
  • Xiao Y, Xiang Y, Zhou W, Chen J, Li K, Yang H. 2017. Microbial community mapping in intestinal tract of broiler chicken. Poult Sci. 96:1387–1393. doi:10.3382/ps/pew372.
  • Xu ZR, Hu CH, Xia MS, Zhan XA, Wang MQ. 2003. Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of male broilers. Poult Sci. 82:1030–1036. doi:10.1093/ps/82.6.1030.
  • Yadav J, Sah R. 2005. Supplementation of corn-soybean based broiler’s diets with different levels of acid protease. J Inst Agric Anim Sci. 26:65–70. doi:10.3126/jiaas.v26i0.613.
  • Yadav S, Jha R. 2019. Strategies to modulate the intestinal microbiota and their effects on nutrient utilization, performance, and health of poultry. J Anim Sci Biotechnol. 10:2. doi:10.1186/s40104-018-0310-9.
  • Young LL, Northcutt JK, Buhr RJ, Lyon CE, Wane GO. 2001. Effects of age, sex and duration of postmortem aging on percentages yield of parts from broiler chicken carcasses. Poult Sci. 80:376–379. doi:10.1093/ps/80.3.376.
  • Yuan L, Wang M, Zhang X, Wang Z. 2017. Effects of protease and non-starch polysaccharide enzyme on performance, digestive function, activity and gene expression of endogenous enzyme of broilers. PLoS One. 12:e0173941. doi:10.1371/journal.pone.0173941.
  • Zakaria HAH, Jalai MAR, Ishmais MAA. 2010. The influence of supplemental multi-enzymes feed additive on the performance, carcass characteristics, and meat quality traits or broiler chickens. Int J Poult Sci. 9:126–133. doi:10.3923/ijps.2010.126.133.
  • Zuo J, Ling B, Long L, Li T, Lahaye L, Yang C, Feng D. 2015. Effect of dietary supplementation with protease on growth performance, nutrient digestibility, intestinal morphology, digestive enzymes and gene expression of weaned piglets. Anim Nutr. 1:276–282. doi:10.1016/j.aninu.2015.10.003.