1,709
Views
2
CrossRef citations to date
0
Altmetric
Research Article

The antibacterial effect of bee venom on subclinical mastitis agents: an alternative for local treatment

, , , , , , , & show all
Pages 323-332 | Received 09 Nov 2022, Accepted 26 Mar 2023, Published online: 12 Apr 2023

References

  • Al-Ani I, Zimmermann S, Reichling J, Wink M. 2015. Pharmacological synergism of bee venom and melittin with antibiotics and plant secondary metabolites against multi-drug resistant microbial pathogens. Phytomedicine. 22:245–255.
  • Al-Shammery KA, Hozzein WN. 2022. Antibacterial activities of two potential peptides extracted from Polistes wattii Cameron 1900 (Vespidae: Polistinae) wasp venom collected at Eastern Province Saudi Arabia. PLoS ONE. 17(3):e0264035.
  • Arteaga V, Lamas A, Regal P, Vázquez B, Manuel J, Cepeda A, Manuel C. 2019. Antimicrobial activity of apitoxin from Apis mellifera in Salmonella enterica strains isolated from poultry and its effects on motility biofilm formation and gene expression. Microb Pathog. 137:103771–103776.
  • Baştan A, Kaçar C, Acar DB, Şahin M, Cengiz M. 2008. Investigation of the incidence and diagnosis of subclinical mastitis in early lactation period cows. Turk J Vet Anim Sci. 32:119–121.
  • Bauer AW, Kirby WMM, Sherris JC, Turck M. 1966. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 36:493–496.
  • Bava R, Castagna F, Musella V, Lupia C, Palma E, Britti D. 2023. Therapeutic Use of Bee venom and potential applications in veterinary medicine. Vet Sci. 10(2):119.
  • Bogdanov S. 2016. Bee venom: Production, composition, quality. In: The bee venom book, Chapter 1, Bee product science. Muehlethurnen. Retrieved from May 2017, http://www.bee-hexagon.net/venom/production-composition-quality/.
  • Boutrin MC, Foster HA, Pentreath VW. 2008. The effects of bee (Apis mellifera) venom phospholipase A2 on Trypanosoma brucei brucei and Enterobacteria. Exp Parasitol. 119(2):246–251.
  • Carpena M, Nuñez-Estevez B, Soria-Lopez A, Simal-Gandara J. 2020. Bee venom: an updating review of its bioactive molecules and its health applications. Nutrients. 12(11):3360.
  • Cheng WN, Han SG. 2020. Bovine mastitis: risk factors therapeutic strategies and alternative treatments - a review, Asian-Australas. J Anim Sci. 33(11):1699–1713.
  • Chuesiang P, Siripatrawan U, Sanguandeekul R, McClements DJ, McLandsborough L. 2019. Antimicrobial activity of PIT-fabricated cinnamon oil nanoemulsions: effect of surfactant concentration on morphology of foodborne pathogens. Food Control. 98:405–411.
  • Clinical and Laboratory Standards Institute. 2015. Method for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard—10th ed, CLSI document M07-A10. Wayne (PA): Clinical and Laboratory Standards Institute.
  • Curicio-Vonlanthen V, Schneider CH, Frutig K, Blaser K, Kalabacher H. 1997. Molecular parameters in melittin immunogenicity. J Pept Sci. 3(4):267–276.
  • Dalanezi FM, Joaquim SF, Guimarães FF, Guerra ST, Lopes BC, Schmidt EMS, Cerri RLA, Langoni H. 2020. Influence of pathogens causing clinical mastitis on reproductive variables of dairy cows. J Dairy Sci. 103:3648–3655.
  • Demir P, Eşki F. 2019. Estimate by quantitative methods of the effect on some milk yield traits with CMT score of subclinic mastitis in cows: pilot study. Van Vet J. 30:177–182.
  • Didaras NA, Karatasou K, Dimitriou TG, Amoutzias GD, Mossialos D. 2020. Antimicrobial activity of bee-collected pollen and beebread: state of the art and future perspectives. Antibiotics. 9(11):811.
  • Fadl A. 2018. Antibacterial and antibiofilm effects of bee venom from (Apis Mellifera) on multidrug-resistant bacteria (MDRB). Al-Azhar J Pharm Sci. 58(2):60–80.
  • Fennell JF, Shipman WH, Cole LJ. 1968. Antibacterial action of melittin a polypeptide from bee venom. Proc Soc Exp Biol Med. 127(3):707–710.
  • Haktanir I, Masoura M, Mantzouridou FT, Gkatzionis K. 2021. Mechanism of antimicrobial activity of honeybee (Apis mellifera) venom on Gram-negative bacteria: Escherichia coli and Pseudomonas spp. AMB Express. 11:54.
  • Han SM, Lee K, Yeo J, Hwang S, Chenoweth PJ, Pak SC. 2009. Somatic cell count in milk of bee venom treated dairy cows with mastitis. J ApiProduct ApiMed Sci. 1:104–109.
  • Han SM, Lee K, Yeo J, Kweon H, Kim B, Kim J, Baek H, Kim S. 2007. Antibacterial activity of the honey Bee venom against bacterial mastitis pathogens infecting dairy cows. Int J Ind Entomol. 14:137–142.
  • Harwig SS, Tan L, Qu XD, Cho YOON, Eisenhauer PB, Lehrer RI. 1995. Bactericidal properties of murine intestinal phospholipase A2. J Clin Invest. 95(2):603–610.
  • Koduri RS, Grönroos JO, Laine VJ, Le Calvez C, Lambeau G, Nevalainen TJ, Gelb MH. 2002. Bactericidal properties of human and murine groups I,II,V,X and XII secreted phospholipases A2. J Biol Chem. 277(8):5849–5857.
  • Kokot ZJ, Matysiak J, Kłs J, Kędzia B, Hołderna-Kędzia E. 2009. Application of principal component analysis for evaluation of chemical and antimicrobial properties of honey bee (Apis mellifera) venom. J Apic Res. 48(3):168–175.
  • Kolayli S, Keskin M. 2020. Natural bee products and their apitherapeutic applications. Stud Nat Prod Chem. 66:175–196.
  • Krishnamoorthy P, Goudar AL, Suresh KP, Roy P. 2021. Global and countrywide prevalence of subclinical and clinical mastitis in dairy cattle and buffaloes by systematic review and meta-analysis. Res Vet Sci. 136:561–586.
  • Kuehn JS, Gorden PJ, Munro D, Rong R, Dong Q, Plummer PJ, Wang C, Phillips GJ. 2013. Bacterial community profiling of milk samples as a means to understand culture-negative bovine clinical mastitis. PLoS One. 8(4):e61959.
  • Kurt S, Eşki F. 2021. Pathogen isolation and antibiogram analysis in dairy cows with clinical mastitis in Adana region Turkey. Etlik Vet Mikrobiyol Derg. 32(1):20–26.
  • Leandro LF, Mendes CA, Casemiro LA, Vinholis AH, Cunha WR, Almeida RD, Martins CH. 2015. Antimicrobial activity of apitoxin melittin and phospholipase A2 of honey bee (Apis mellifera) venom against oral pathogens. An Acad Bras Ciênc. 87:147–155.
  • Lewis RJ, Garcia ML. 2003. Therapeutic potential of venom peptides. Nat Rev Drug Discov. 2(10):790–802.
  • Libera K, Konieczny K, Witkowska K, Żurek K, Szumacher-Strabel M, Cieslak A, Smulski S. 2330. The association between selected dietary minerals and mastitis in dairy cows—a review. Animals. 1(8):2021.
  • Marques Pereira AF, Albano M, Bérgamo Alves FC, Murbach Teles Andrade BF, Furlanetto A, Mores Rall VL, Delazari Dos Santos L, de Oliveira Orsi R, Fernandes Júnior A. 2020. Influence of apitoxin and melittin from Apis mellifera bee on Staphylococcus aureus strains. Microb Pathog.141:104011.
  • Memariani H, Memariani M, Shahidi-Dadras M, Nasiri S, Akhavan MM, Moravvej H. 2019. Melittin: from honeybees to superbugs. Appl Microbiol Biotechnol. 103(8):3265–3276.
  • Nassar M, Mawgoud Y, Dawoud M, Helal S, Fathy HM. 2018. Effect of honey bee venom against intensive care units environmental pathogens, Egypt. J Exp Biol. 14(2):237–244.
  • Neubauer D, Jaśkiewicz M, Migoń D, Bauer M, Sikora K, Sikorska E, Kamysz W. 2017. Retro analog concept: comparative study on physico-chemical and biological properties of selected antimicrobial peptides. Amino Acids. 49(10):1755–1771.
  • Park JH, Kim KH, Kim SJ, Lee WR, Lee KG, Park KK. 2010. Bee venom protects hepatocytes from tumor necrosis factor-α and actinomycin D. Arch Pharmacal Res. 33(2):215–223.
  • Park S, Park BD, Yun S, Kang HJ, So B. 2013. Antimicrobial activities of honey bee venom against pathogens isolated from clinical bovine mastitis in Korea. Planta Med. 79(13):PL16.
  • Pascoal A, Estevinho MM, Choupina A, Sousa-Pimenta M, Estevinho LM. 2019. An overview of the bioactive compounds therapeutic properties and toxic effects of apitoxin. Food Chem Toxicol. 134:1–11.
  • Ratcliffe N, Azambuja P, Mello CB. 2014. Recent advances in developing insect natural products as potential modern day medicines. Evid Based Complement Alternat Med. 2014:904958.
  • Romero J, Benavides E, Meza C. 2018. Assessing financial impacts of subclinical mastitis on Colombian dairy farms. Front Vet Sci. 5:273.
  • Samancı T, Kekeçoğlu M. 2019. Comparison of commercial and anatolian bee venom in terms of chemical composition. Uludağ Arıcılık Derg. 19(1):61–68.
  • Shai Y. 2002. Mode of action of membrane active antimicrobial peptides. Biopolymers. 66:236–248.
  • Son DJ, Lee JW, Lee YH, Song HS, Lee CK, Hong JT. 2007. Therapeutic application of anti-arthritis pain-releasing and anti-cancer effects of bee venom and its constituent compounds. Pharmacol Ther. 115(2):246–270.
  • Sonmez E, Kekecoglu M, Bozdeveci A, Karaoglu SA. 2022. Chemical profiling and antimicrobial effect of Anatolian honey bee venom. Toxicon. 213:1–6.
  • Tanuğur-Samancı AE, Kekeçoğlu M. 2021. An evaluation of the chemical content and microbiological contamination of Anatolian bee venom. PloS One. 16(7):e0255161.
  • Xie J, Zhao Q, Li S, Yan Z, Li J, Li Y, Wang R. 2017. Novel antimicrobial peptide CPF-C1 analogs with superior stabilities and activities against multidrug-resistant bacteria. Chem Biol Drug Des. 90(5):690–702.
  • Yacoub T, Rima M, Karam M, Sabatier J M, Fajloun Z. 2020. Antimicrobials from venomous animals: An overview. Molecules. 25(10):2402.
  • Yazgan H, Kuley E, Güven Gökmen T, Regenstein J M, Özogul F. 2021. The antimicrobial properties and biogenic amine production of lactic acid bacteria isolated from various fermented food products. J Food Process Preserv. 45(1):e15085.
  • Yin C, Park HJ, Chae Y, Ha E, Park HK, Lee HS, Lee H. 2007. Korean acupuncture: the individualized and practical acupuncture. Neurol Res. 29(1):10–15.
  • Zolfagharian H, Mohajeri M, Babaie M. 2016. Bee venom (Apis Mellifera) an effective potential alternative to gentamicin for specific bacteria strains: Bee venom an effective potential for bacteria. J Pharmacopuncture. 19(3):225–230.