1,372
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The effects of phytase and a multicarbohydrase complex containing α-galactosidase on performance, processing yield, and nutrient digestibility in the broiler chicken

, , , , , & show all
Pages 308-322 | Received 26 Oct 2022, Accepted 28 Mar 2023, Published online: 12 Apr 2023

References

  • Adeola O, Cowieson AJ. 2011. Opportunities and challenges in using exogenous enzymes to improve nonruminant animal production. J Anim Sci. 89:3189–3218. doi:10.2527/jas.2010-3715.
  • Adrian TE, Ferri GL, Bacarese-Hamilton AJ, Fuessl HS, Polak JM, Bloom SR. 1985. Human distribution and release of a putative new gut hormone, peptide YY. Gastroenterology. 89:1070–1077. doi:10.1016/0016-5085(85)90211-2.
  • American Veterinary Medical Association. 2020. AVMA guidelines for the euthanasia of animals. Schaumburg (IL): American Veterinary Medical Association.
  • Atteh JO, Leeson S. 1983. Effects of dietary fatty acids and calcium levels on performance and mineral metabolism of broiler chickens. Poult Sci. 62:2412–2419. doi:10.3382/ps.0622412.
  • Aviagen. 2019a. Ross broiler: nutrition specifications. Huntsville (AL): Aviagen.
  • Aviagen. 2019b. Yield plus x Ross 708: performance objectives. Huntsville (AL): Aviagen.
  • Baião NC, Lara LJC. 2005. Oil and fat in broiler nutrition. Braz J Poult Sci. 7:129–141. doi:10.1590/S1516-635X2005000300001.
  • Bedford M, Rousseau X. 2017. Recent findings regarding calcium and phytase in poultry nutrition. Anim Prod Sci. 57:2311–2316. doi:10.1071/AN17349.
  • Bedford MR. 2000. Exogenous enzymes in monogastric nutrition – their current value and future benefits. Anim Feed Sci Technol. 86:1–13. doi:10.1016/S0377-8401(00)00155-3.
  • Broch J, Dos Santos EC, Damasceno JL, Nesello PO, de Souza C, Eyng C, Pesti GM, Nunes RV. 2020. Phytase and phytate interactions on broilers’ diet at 21 days of age. J Appl Poult Res. 29:240–250. doi:10.1016/j.japr.2019.10.010.
  • Cowieson AJ. 2010. Strategic selection of exogenous enzymes for corn/soy-based poultry diets. J Poult Sci. 47:1–7. doi:10.2141/jpsa.009045.
  • Cowieson AJ, Acamovic T, Bedford MR. 2004. The effects of phytase and phytic acid on the loss of endogenous amino acids and minerals from broiler chickens. Br Poult Sci. 45:101–108. doi:10.1080/00071660410001668923.
  • Cowieson AJ, Bedford MR, Selle PH. 2009. Phytate and microbial phytase: implications for endogenous nitrogen losses and nutrient availability. World’s Poult Sci J. 65:401–418. doi:10.1017/S0043933909000294.
  • Cowieson AJ, Masey O’Neill HV. 2013. Effects of exogenous xylanase on performance, nutrient digestibility and caecal thermal profiles of broilers given wheat-based diets. Br Poult Sci. 54:346–354. doi:10.1080/00071668.2013.780200.
  • Cowieson AJ, Ruckebusch JP, Sorbara JOB, Wilson JW, Guggenbuhl P, Roos FF. 2017. A systematic view on the effect of phytase on ileal amino acid digestibility in broilers. Anim Feed Sci Technol. 225:182–194. doi:10.1016/j.anifeedsci.2017.01.008.
  • da Silva RP, Nissim I, Brosnan ME, Brosnan JT. 2009. Creatine synthesis: hepatic metabolism of guanidinoacetate and creatine in the rat in vitro and in vivo. Am J Physiol Endocrinol Metab. 296:E256–261. doi:10.1152/ajpendo.90547.2008.
  • De Keyser K, Kuterna L, Kaczmarek S, Rutkowski A, Vanderbeke E. 2016. High dosing NSP enzymes for total protein and digestible amino acid reformulation in a wheat/corn/soybean meal diet in broilers. J Appl Poult Res. 25:239–246. doi:10.3382/japr/pfw006.
  • Ennis CE, Jackson M, Gutierrez O, Cantley S, Wamsley KGS. 2020. Phytase and carbohydrase inclusion strategies to explore synergy within low-energy diets to optimize 56-day male broiler performance and processing. J Appl Poult Res. 29:1045–1067. doi:10.1016/j.japr.2020.09.013.
  • Fernandes JIM, Horn D, Ronconi EJ, Buzim R, Lima FK, Pazdiora DA. 2019. Effects of phytase superdosing on digestibility and bone integrity of broilers. J Appl Poult Res. 28:390–398. doi:10.3382/japr/pfz001.
  • Gautier AE, Rochell SJ. 2020. Influence of coccidiosis vaccination on nutrient utilization of corn, soybean meal and distilled dried grains with solubles in broilers. Poult Sci. 99:3540–3549. doi:10.1016/j.psj.2020.03.035.
  • Gitzelmann R, Auricchio S. 1965. The handling of soya alpha-galactosides by a normal and a galactosemic child. Pediatrics. 36:231–235.
  • Graham KK, Kerley MS, Firman JD, Allee GL. 2002. The effect of enzyme treatment of soybean meal on oligosaccharide disappearance and chick growth performance. Poult Sci. 81:1014–1019. doi:10.1093/ps/81.7.1014.
  • Gulizia JP, Rueda MS, Ovi FK, Bonilla SM, Prasad R, Jackson ME, Gutierrez O, Pacheco WJ. 2022. Evaluate the effect of a commercial heat stable phytase on broiler performance, tibia ash, and mineral excretion from 1 to 49 days of age assessed using nutrient reduced diets. J Appl Poult Res. 31:100276. doi:10.1016/j.japr.2022.100276.
  • Harland BF, Narula G. 1999. Food phytate and its hydrolysis products. Nutr Res. 19:947–961. doi:10.1016/S0271-5317(99)00055-X.
  • Humer E, Schwarz C, Schedle K. 2015. Phytate in pig and poultry nutrition. J Anim Physiol Anim Nutr. 99:605–625. doi:10.1111/jpn.12258.
  • Jackson ME. 2010. Mannanase, alpha-galactosidase and pectinase. In: Bedford MR, Partridge G, editors. Enzymes in farm animal nutrition. 2nd ed. Oxfordshire: CAB International; p. 54–84.
  • Jasek A, Latham RE, Mañón A, Llamas-Moya S, Adhikari R, Poureslami R, Lee JT. 2018. Impact of a multicarbohydrase containing α-galactosidase and xylanase on ileal digestible energy, crude protein digestibility, and ileal amino acid digestibility in broiler chickens. Poult Sci. 97:3149–3155. doi:10.3382/ps/pey193.
  • Juanpere J, Pérez-Vendrell AM, Angulo E, Brufau J. 2005. Assessment of potential interactions between phytase and glycosidase enzyme supplementation on nutrient digestibility in broilers. Poult Sci. 84:571–580. doi:10.1093/ps/84.4.571.
  • Karimi A, Coto C, Mussini F, Goodgame S, Lu C, Yuan J, Bedford MR, Waldroup PW. 2013. Interactions between phytase and xylanase enzymes in male broiler chicks fed phosphorus-deficient diets from 1 to 18 days of age. Poult Sci. 92:1818–1823. doi:10.3382/ps.2012-02818.
  • Kidd MT, Morgan GW Jr., Price CJ. 2001a. Enzyme supplementation to corn and soybean meal diets for broilers. J Appl Poult Res. 10:65–70. doi:10.1093/japr/10.1.65.
  • Kidd MT, Morgan GW Jr., Zumwalt CD. 2001b. α-Galactosidase enzyme supplementation to corn and soybean meal broiler diets. J Appl Poult Res. 10:186–193. doi:10.1093/japr/10.2.186.
  • Kim M, Ingale SL, Hosseindoust A, Choi Y, Kim KY, Chae B. 2021. Synergistic effect of exogenous multi-enzyme and phytase on growth performance, nutrients digestibility, blood metabolites, intestinal microflora and morphology in broilers fed corn-wheat-soybean meal diets. Anim Biosci. 34:1365–1374. doi:10.5713/ab.20.0663.
  • Lee SA, Dunne J, Febery E, Brearley CA, Mottram T, Bedford MR. 2018. Exogenous phytase and xylanase exhibit opposing effects on real-time gizzard pH in broiler chickens. Br Poult Sci. 59:568–578. doi:10.1080/00071668.2018.1496403.
  • Leeson S, Summers JD. 2001a. Minerals. In: Leeson S, editor. Scott’s nutrition of the chicken. 4th rev. ed. Guelph: University Books; p. 331–420.
  • Leeson S, Summers JD. 2001b. Digestion and nutrient availability. In: Leeson S, editor. Scott’s nutrition of the chicken. 4th rev. ed. Guelph: University Books; p. 1–33.
  • Leyva-Jimenez H, Alsadwi AM, Gardner K, Voltura E, Bailey CA. 2019. Evaluation of high dietary phytase supplementation on performance, bone mineralization, and apparent ileal digestible energy of growing broilers. Poult Sci. 98:811–819. doi:10.3382/ps/pey389.
  • Llamas-Moya S, Girdler CP, Shalash SMM, Atta AM, Gharib HB, Morsy EA, Salim HM, Awaad MHH, Elmenawey M. 2020. Effect of a multicarbohydrase containing α-galactosidase enzyme on the performance, carcass yield, and humoral immunity of broilers fed corn-soybean meal-based diets of varying energy density. J Appl Poult Res. 29:142–151. doi:10.1016/j.japr.2019.10.001.
  • Llamas-Moya S, Higgins NF, Adhikari R, Lawlor PG, Lacey S. 2021. Effect of multicarbohydrase enzymes containing α-galactosidase on the growth and apparent metabolizable energy digestibility of broiler chickens: a meta-analysis. Anim Feed Sci Technol. 277:114949. doi:10.1016/j.anifeedsci.2021.114949.
  • Lu H, Adedokun SA, Preynat A, Legrand-Defretin V, Geraert PA, Adeola O, Ajuwon KM. 2013. Impact of exogenous carbohydrases and phytase on growth performance and nutrient digestibility in broilers. Can J Anim Sci. 93:243–249. doi:10.4141/cjas2012-138.
  • Meng X, Slominski BA. 2005. Nutritive values of corn, soybean meal, canola meal, and peas for broiler chickens as affected by a multicarbohydrase preparation of cell wall degrading enzymes. Poult Sci. 84:1242–1251. doi:10.1093/ps/84.8.1242.
  • Mohiti-Asli M, Ghanaatparast-Rashti M, Akbarian P, Mousavi SN. 2020. Effects of a combination of phytase and multi-carbohydrase enzymes in low-density corn-soybean meal based diets on growth performance and ileal nutrients digestibility of male broilers. Ital J Anim Sci. 19:1533–1541. doi:10.1080/1828051X.2020.1857311.
  • Ojano-Dirain CP, Waldroup PW. 2002. Evaluation of lysine, methionine and threonine needs of broilers three to six week of age under moderate temperature stress. Int J Poult Sci. 1:16–21. doi:10.3923/ijps.2002.16.21.
  • Olukosi OA, González-Ortiz G, Whitfield H, Bedford MR. 2020. Comparative aspects of phytase and xylanase effects on performance, mineral digestibility, and ileal phytate degradation in broilers and turkeys. Poult Sci. 99:1528–1539. doi:10.1016/j.psj.2019.11.018.
  • Pallauf J, Rimbach G. 1997. Nutritional significance of phytic acid and phytase. Arch Anim Nutr. 50:301–319. doi:10.1080/17450399709386141.
  • Parkkonen R, Tervilӓ-Wilo A, Hopeakoski-Nurminen M, Morgan A, Poutanen K, Autio K. 1997. Changes in wheat micro structure following in vitro digestion. Acta Agric Scand B Soil and Plant Sci. 47:43–47. doi:10.1080/09064719709362437.
  • Poernama F, Wibowo TA, Liu YG. 2021. The effect of feeding phytase alone or in combination with nonstarch polysaccharides-degrading enzymes on broiler performance, bone mineralization, and carcass traits. J Appl Poult Res. 30:100134. doi:10.1016/j.japr.2020.100134.
  • Ravindran V, Cabahug S, Ravindran G, Selle PH, Bryden WL. 2000. Response of broiler chickens to microbial phytase supplementation as influenced by dietary phytic acid and non-phytate phosphorus levels. II. Effects on apparent metabolisable energy, nutrient digestibility and nutrient retention. Br Poult Sci. 41:193–200. doi:10.1080/00071660050022263.
  • Ravindran V, Morel PC, Partridge GG, Hruby M, Sands JS. 2006. Influence of an Escherichia coli-derived phytase on nutrient utilization in broiler starters fed diets containing varying concentrations of phytic acid. Poult Sci. 85:82–89. doi:10.1093/ps/85.1.82.
  • Scholey DV, Morgan NK, Riemensperger A, Hardy R, Burton EJ. 2018. Effect of supplementation of phytase to diets low in inorganic phosphorus on growth performance and mineralization of broilers. Poult Sci. 97:2435–2440. doi:10.3382/ps/pey088.
  • Schramm VG, Durau JF, Barrilli LNE, Sorbara JOB, Cowieson AJ, Félix AP, Maiorka A. 2017. Interaction between xylanase and phytase on the digestibility of corn and a corn/soy diet for broiler chickens. Poult Sci. 96:1204–1211. doi:10.3382/ps/pew356.
  • Selle PH, Cowieson AJ, Ravindran V. 2009. Consequences of calcium interactions with phytate and phytase for poultry and pigs. Livest Sci. 124:126–141. doi:10.1016/j.livsci.2009.01.006.
  • Short FJ, Gorton P, Wiseman J, Boorman KN. 1996. Determination of titanium dioxide added as an inert marker in chicken digestibility studies. Anim Feed Sci Technol. 59:215–221. doi:10.1016/0377-8401(95)00916-7.
  • Slominski BA. 2011. Recent advances in research on enzymes for poultry diets. Poult Sci. 90:2013–2023. doi:10.3382/ps.2011-01372.
  • Slominski BA, Guenter W, Campbell LD. 1993. New approach to water-soluble carbohydrate determination as a tool for evaluation of plant cell wall degrading enzymes. J Agric Food Chem. 41:2304–2308. doi:10.1021/jf00036a016.
  • Smith KA, Wyatt CL, Lee JT. 2019. Evaluation of increasing levels of phytase in diets containing variable levels of amino acids on male broiler performance and processing yields. J Appl Poult Res. 28:253–262. doi:10.3382/japr/pfy065.
  • Sommerfeld V, Schollenberger M, Kühn I, Rodehutscord M. 2018. Interactive effects of phosphorus, calcium, and phytase supplements on products of phytate degradation in the digestive tract of broiler chickens. Poult Sci. 97:1177–1188. doi:10.3382/ps/pex404.
  • Statistical Analysis System. Institute Inc. 2010. Using JMP 9. Cary, NC: SAS Institute.
  • Stein HH, Fuller MF, Moughan PJ, Sève B, Mosenthin R, Jansman AJM, Fernández JA, de Lange CFM. 2007. Definition of apparent, true and standardized ileal digestibility of amino acids in pigs. Livest Sci. 109:282–285. doi:10.1016/j.livsci.2007.01.019.
  • Tancharoenrat P. 2012. Factors influencing fat digestion in poultry. PhD diss. Massey University, Palmerston North, New Zealand.
  • Tancharoenrat P, Ravindran V. 2014. Influence of tallow and calcium concentrations on the performance and energy and nutrient utilization in broiler starters. Poult Sci. 93:1453–1462. doi:10.3382/ps.2013-03817.
  • Tesseraud S, Maaa N, Peresson R, Chagneau AM. 1996. Relative responses of protein turnover in three different skeletal muscles to dietary lysine deficiency in chicks. Br Poult Sci. 37:641–650. doi:10.1080/00071669608417893.
  • Walk CL, Santos TT, Bedford MR. 2014. Influence of superdoses of a novel microbial phytase on growth performance, tibia ash, and gizzard phytate and inositol in young broilers. Poult Sci. 93:1172–1177. doi:10.3382/ps.2013-03571.
  • Walters HG, Coelho M, Coufal CD, Lee JT. 2019. Effects of increasing phytase inclusion levels on broiler performance, nutrient digestibility, and bone mineralization in low-phosphorus diets. J Appl Poult Res. 28:1210–1225. doi:10.3382/japr/pfz087.
  • Wang J, Patterson R, Kim WK. 2019. Effects of extra-dosing phytase in combination with multi-carbohydrase on growth performance and bone mineralization using dual-energy x-ray absorptiometry in broilers. J Appl Poult Res. 28:722–728. doi:10.3382/japr/pfz024.
  • Wang J, Patterson R, Kim WK. 2021. Effects of phytase and multicarbohydrase on growth performance, bone mineralization, and nutrient digestibility in broilers fed a nutritionally reduced diet. J Appl Poult Res. 30:100146. doi:10.1016/j.japr.2021.100146.
  • Wolf A, Watson M, Wolf N. 2003. Digestion and dissolution methods for P, K, Ca, Mg, and trace elements. In: Peters J, editor. Recommended methods of manure analysis. Madison (WI): University of Wisconsin Extension Publication; p. 30–39.
  • Woyengo TA, Nyachoti CM. 2011. Review: supplementation of phytase and carbohydrases to diets for poultry. Can J Anim Sci. 91:177–192. doi:10.4141/cjas10081.
  • Woyengo TA, Slominski BA, Jones RO. 2010. Growth performance and nutrient utilization of broiler chickens fed diets supplemented with phytase alone or in combination with citric acid and multicarbohydrase. Poult Sci. 89:2221–2229. doi:10.3382/ps.2010-00832.
  • Zhao R, Zhao R, Tu Y, Zhang X, Deng L, Chen X. 2018. A novel α-galactosidase from the thermophilic probiotic Bacillus coagulans with remarkable protease-resistance and high hydrolytic activity. PLoS One. 13:e0197067. doi:10.1371/journal.pone.0197067.