460
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Bacterial or fungal origin phytase enzyme affects the performance and mineralization of calcium and phosphorus differently in broiler chickens fed deficient calcium and phosphorous diets

, , , &
Pages 669-676 | Received 26 Sep 2023, Accepted 10 Oct 2023, Published online: 25 Oct 2023

References

  • Abd-Elsamee MO. 2002. Effect of different levels of crude protein, sulphur amino acids, microbial phytase and their interaction on broiler chick performance. Egypt Poult Sci J. 22:999–1021.
  • Ahmad T, Rassol S, Sarwar M, Haq A, Hasan Z. 2000. Effect of microbial phytase produced from a fungus Aspergillus niger on bioavailibility of phosphorus and calcium in broiler chicken. Anim Feed Sci Techol. 83:103–114. doi:10.1016/S0377-8401(99)00122-4.
  • Aksakal DH, Bilal T. 2002. Effects of microbial phytase and 1,25- dihydroxycholecalciferol on the absorption of minerals from broiler chicken diets containing different levels of calcium. Ind Vet J. 79:446–450.
  • Anawati J, Azimi G. 2020. Recovery and separation of phosphorus as dicalcium phosphate dihydrate for fertilizer and livestock feed additive production from a low-grade phosphate ore. RSC Adv. 10(63):38640–38653. doi:10.1039/D0RA07210A.
  • AOAC. 2005. Official methods of analysis, 18th ed. Arlington, VA: AOAC Int.
  • Attia YA, Bovera F, Iannaccone F, Al-Harthi MA, Alaqil AA, Zeweil HS, Mansour AE. 2020. Microbial and fungal phytases can affect growth performance, nutrient digestibility and blood profile of broilers fed different levels of non-phytic phosphorous. Animals (Basel). 10(4):580. doi:10.3390/ani10040580.
  • Augspurger NR, Webel DM, Lei XG, Baker DH. 2003. Efficacy of an E. Coli phytase expressed in yeast for releasing phytate-bound phosphorus in young chicks and pigs. J Anim Sci 81:474–483. doi:10.2527/2003.812474x.
  • Bhadada SK, Rao SD. 2021. Role of phosphate in biomineralization. Calcif Tissue Int. 108(1):32–40. doi:10.1007/s00223-020-00729-9.
  • Bilal T, Eracg E. 2003. Retention of cadmium in the tissues of broiler chicks by dietary supplemental microbial phytase. Vet Med Czech. 48:199–205. doi:10.17221/5770-VETMED.
  • Camden BJ, Morel PCH, Thomas DV, Ravindran V, Bedford MR. 2001. Effectiveness of exogenous phytase in improving the bioavailabilities of phosphorus and other nutrients in maize-soya-bean meal diets for broilers. Anim Sci. 73:289–297. doi:10.1017/S1357729800058264.
  • Costa FGP, Goulart CC, Figueiredo DF, Oliveria CFS, Silva JHV. 2008. Economic and environmental impact of using exogenous enzymes on poultry feeding. Int J Poult Sci. 7(4):311–314. doi:10.3923/ijps.2008.311.314.
  • de Farias MRS, Leite SCB, de Vasconcelos AM, da Silva TAG, Leitão AMF, de Sena TL, Pacheco DB, de Abreu CG, Silveira RMF. 2020. Thermoregulatory, behavioral and productive responses of laying hens supplemented with different types and dosages of phytases raised in a hot environment: an integrative approach. J Therm Biol. 94:102773. doi:10.1016/j.jtherbio.2020.102773.
  • Dilger RN, Onyango EM, Sands JS, Adeole O. 2004. Evaluation of microbial phytase in broiler diets. Poult Sci. 83:962–970. doi:10.1093/ps/83.6.962.
  • Driver JP, Pesti GM, Bakalli RI, Edwards Jr HM. 2005. Effects of calcium and nonphytate phosphorus concentrations on phytase efficacy in broiler chicks. Poult Sci. 84:1406–1417. doi:10.1093/ps/84.9.1406.
  • Gagne F, Matte JJ, Barnett G, Pomar C. 2002. The effect of microbial phytase and feed restriction on protein, fat and ash deposition in growing-finishing pigs. Can J Anim Sci. 82:551–558. doi:10.4141/A01-076.
  • Huyghebaert G, Bleukx W, Ruyseveldt F, Delezie E, Kwanyuen P, Brake J. 2009. Interaction of calcium and phytate in broiler diets. effects on apparent prececa digestibility and retention of phosphorus. Poult Sci. 87:448–459.
  • Igbasan FA, Simon O, Milksch G, Manner K. 2000. Comparative studies of the in vitro properties of phytases from various microbial origins. Arch Anim Nutr. 53:353–373.
  • Jamal M, Omar A, Sabha R. 2009. Effects of phytase on broilers performance and body status of phosphorus. Hebron Univ Res J. 4:55–66.
  • Jlali M, Cozannet P, Alleno C, Preynat A. 2020. Evaluation of a multicarbohydrase and phytase complex in reduced energy, amino acids, available phosphorus and calcium diets fed to broilers. Livest Sci. 241:104227. doi:10.1016/j.livsci.2020.104227.
  • Leeson S, Summers JD. 2001. Scott’s nutrition of the chicken, 4th ed. Ontario, Canada: University Books P.O. Box 1326 Guelph.
  • Lim HS, Namkung H, Um JS, Kang KR, Kim BS, Paik IK. 2001. The effect of phytase supplementation on the performance of broiler chickens fed diets with different levels of non-phytate phosphorus. Asian-Aust J Anim Sci. 14(2):250–257. doi:10.5713/ajas.2001.250.
  • Luciana DPN, Duarte A, Antonio C, Gomidel GBEM, Maria C, Abreu PD. 2012. Activity of fungal phytases stored in two ways in response to the period of storage at room temperature. Ciencia Rural Santa Maria. 42:178–183. doi:10.1590/S0103-84782012000100029.
  • Majeed S, Qudsieh R, Edens FW, Brake J. 2020. Limestone particle size, calcium and phosphorus levels, and phytase effects on live performance and nutrients digestibility of broilers. Poult Sci. 99(3):1502–1514. doi:10.1016/j.psj.2019.11.009.
  • Mondal MK, Panda S, Biswas P. 2007. Effect of microbial phytase in soybean meal based broiler diets containing low phosphorus. Int J Poult Sci. 6:201–206. doi:10.3923/ijps.2007.201.206.
  • NRC. 1994. Nutrient requirements of poultry, 9th ed. Washington, DC: National Academy of Press.
  • Onyango EM, Bedford MR, Adeola O. 2005. Phytase activity along the digestive tract of the broiler chick. A comparative study of an Escherichia coli-derived and Peniophora lycii phytase. Can J Anim Sci. 85:61–68. doi:10.4141/A04-067.
  • Paik IK. 2003. Application of phytase, microbial or plant origin, to reduce phosphorus excretion in poultry production. Asian-Aust J Anim Sci. 16:124–135. doi:10.5713/ajas.2003.124.
  • Pierce J. 2000. Phytase produation pollution in T. P Lyosn and D.J.A coleed. concepts in poultry science. Nottigham, UK: Nottigham University Press.
  • Ravindran V, Cabahug S, Ravindran G, Selle PH, Bryden WL. 2000. Response of broiler chickens to microbial phytase supplementation as influenced by dietary phytic acid and nonphytate phosphorus levels. II. Effects on apparent metabolisable energy, nutrient digestibility and nutrient retention. Br Poult Sci. 41:193–200. doi:10.1080/00071660050022263.
  • Ravindran V, Morel PCH, Partridge GG, Hruby M, Sands JS. 2006. Influence of an Escherichia coli-derived phytase on nutrient utilization in broiler starters fed diets containing varying concentrations of phytic acid. Poult Sci. 85:82–89. doi:10.1093/ps/85.1.82.
  • Rodriguez E, Porres JM, Han Y, Lei XG. 1999. Different sensitivity of recombinant Aspergillus nigerphytase (r-PhyA) and Escherichia coli pH 2.5 acid phosphatase (r-AppA) to trypsin and pepsinin vitro. Arch Biochem Biophys. 365:262–267. doi:10.1006/abbi.1999.1184.
  • Rouhollah N, Hosseini SM, Farhangfar H. 2011. Effect of citric acid and microbial phytase on serum enzyme activities and plasma minerals retention in broiler chicks. Afr J Biotechnol. 10:13640–13650.
  • Rutherfurd SM, Chung TK, Moughan PJ. 2002. The effect of microbial phytase on ileal phosphorus and amino acid digestibility in the broiler chickens. Br Poult Sci. 43:598–606. doi:10.1080/0007166022000004516.
  • Saleh AA. 2017. Influence of Escherichia coli 6-phytase supplementation on performance and egg quality in Hi-Sex laying hens fed phosphorus deficient diets. Egypt Poult Sci J. 37(4):1105–1117. doi:10.21608/epsj.2017.5382.
  • Saleh AA, Elsawee M, Soliman MM, Elkon RY, Alzawqari MH, Shukry M, Abdel-Moneim A-ME, Eltahan H. 2021. Effect of bacterial or fungal phytase supplementation on the performance, egg quality, plasma biochemical parameters, and reproductive morphology of laying hens. Animals (Basel). 11(2):540. doi:10.3390/ani11020540.
  • SAS Institute. 2006. SAS user’s guide: statistics. Version 9.1.3 ed. Cary, NC: SAS Inst. Inc.
  • Selle PH, Ravindran V. 2007. Microbial phytase in poultry nutrition: a review. Anim Feed Sci Technol. 35:1–41. doi:10.1016/j.anifeedsci.2006.06.010.
  • Taheri HR, Mirisakhani L. 2020. Effect of citric acid, vitamin D3, and high-dose phytase on performance of broiler chicken fed diet severely limited in non-phytate phosphorus. Livest Sci. 241:104223. doi:10.1016/j.livsci.2020.104223.
  • Tahir M, Saleh F, Ohtsuka A, Hayahsi K. 2005. Synergistic effect of cellulase and hemicellulase on nutrient utilization and performance in broilers fed a corn-soybean meal diet. Anim Sci J. 76:559–565. doi:10.1111/j.1740-0929.2005.00304.x.
  • Tahir M, Saleh F, Ohtsuka A, Hayahsi K. 2006. Pectinase plays an important role in stimulating digestibility of a corn-soybean meal diet in broilers. J Poult Sci. 43:323–329. doi:10.2141/jpsa.43.323.
  • Tahir M, Saleh F, Ohtsuka A, Hayashi K. 2008. An effective combination of carbohydrases that enables reduction of dietary protein in broilers: importance of hemicellulase. Poult Sci. 87:713–718. doi:10.3382/ps.2007-00340.
  • Tanruean K, Penkhrue W, Kumla J, Suwannarach N, Lumyong S. 2021. Valorization of lignocellulosic wastes to produce phytase and cellulolytic enzymes from a-thermophilic fungus, thermoascus aurantiacus SL16W, under semi-solid state fermentation. J Fungi. 7(4):286. doi:10.3390/jof7040286.
  • Walk CL, Romero LF, Cowieson AJ. 2021. Towards a digestible calcium system for broiler chicken nutrition: a review and recommendations for the future. Anim Feed Sci Technol. 114930. doi:10.1016/j.anifeedsci.2021.114930.
  • Woyengo TA, Slominski BA, Jones RO. 2010. Growth performance and nutrient utilization of broiler chickens fed diets supplemented with phytase alone or in combination with citric acid and multi carbohydrase. Poult Sci. 89:2221–2229. doi:10.3382/ps.2010-00832.
  • Zhang Z, Kornegay BET, Radcliffe JS, Denbow DM, Veit HP, Larsen CT. 2000. Comparison of genetically engineered microbial and plant phytase for young broiler. Poult Sci. 79:709–717. doi:10.1093/ps/79.5.709.