847
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Assessment of trace elements (Cu, Fe, and Zn) in Limnothrissa miodon from Lake Kariba, Zambia: implications for ecological and human health

, , , , , , , , , & show all
Article: 2310753 | Received 13 Oct 2023, Accepted 22 Jan 2024, Published online: 06 Feb 2024

References

  • Adeogun AO, Ibor OR, Omiwole R, Chukwuka AV, Adewale AH, Kumuyi O, Arukwe A. 2020. Sex-differences in physiological and oxidative stress responses and heavy metals burden in the black jaw tilapia, Sarotherodon melanotheron from a tropical freshwater dam (Nigeria). Comp Biochem Physiol C Toxicol Pharmacol. 229:108676. doi:10.1016/j.cbpc.2019.108676.
  • Ahmed AS, Sultana S, Habib A, Ullah H, Musa N, Hossain MB, Rahman MM, Sarker MSI. 2019. Bioaccumulation of heavy metals in some commercially important fishes from a tropical river estuary suggests a higher potential health risk in children than adults. PLoS One. 14:e0219336. doi:10.1371/journal.pone.0219336.
  • Aksu Ö, Yabanli M, Can E, Kutluyer F, Kehayias G, Can ŞS, Kocabaş M, Demir V. 2012. Comparison of heavy metals bioaccumulation by Dreissena polymorpha (Pallas, 1771) and Unio elongatulus eucirrus (Bourguignat, 1860) from Keban Dam Lake, Turkey. Fresenius Environ Bull. 21(7):1942–1947.
  • Alloway BJ. 2013. Sources of heavy metals and metalloids in soils. In: Alloway B.J., editor. Heavy metals in soils: trace metals and metalloids in soils and their bioavailability, environmental pollution. Vol. 22. Dordrecht: Springer; p. 11–50. doi:10.1007/978-94-007-4470-7.
  • Anderson LE, DeMont I, Dunnington DD, Bjorndahl P, Redden DJ, Brophy MJ, Gagnon GA. 2023. A review of long-term change in surface water natural organic matter concentration in the northern hemisphere and the implications for drinking water treatment. Sci Total Environ. 858:159699. doi:10.1016/j.scitotenv.2022.159699.
  • Ardeshir RA, Movahedinia AA, Rastgar S. 2017. Fish liver biomarkers for heavy metal pollution: a review article. American Journal of Toxicology. 2(1):1–8.
  • Baki MA, Hossain MM, Akter J, Quraishi SB, Shojib MFH, Ullah AA, Khan MF. 2018. Concentration of heavy metals in seafood (fishes, shrimp, lobster and crabs) and human health assessment in Saint Martin Island, Bangladesh. Ecotoxicol Environ Saf. 159:153–163. doi:10.1016/j.ecoenv.2018.04.035.
  • Behbahani M, Salarian M, Amini MM, Sadeghi O, Bagheri A, Bagheri S. 2013. Application of a new functionalized nanoporous silica for simultaneous trace separation and determination of Cd (II), Cu (II), Ni (II), and Pb (II) in food and agricultural products. Food Anal Methods. 6:1320–1329. doi:10.1007/s12161-012-9545-9.
  • Bell-Cross G, Bell-Cross B. 1971. Introduction of Limnothrissa miodon and Limnocaridina tanganicae from Lake Tanganyika into Lake Kariba. Fisheries Research Bulletin Zambia. 5:207–214.
  • Berg H, Kiibus M, Kautsky N. 1995. Heavy metals in tropical lake Kariba, Zimbabwe. Water, Air, Soil Pollut. 83:237–252. doi:10.1007/BF00477355.
  • Bharti JJS, Kumar SS, Kumar V, Kumar A, Kumar D. 2022. A review on the capability of zinc oxide and iron oxide nanomaterials, as a water decontaminating agent: Adsorption and photocatalysis. Appl Water Sci. 12(3):46. doi:10.1007/s13201-021-01566-3.
  • Bredesen DE. 2015. Metabolic profiling distinguishes three subtypes of Alzheimer's disease. Aging. 7(8):595–600. doi:10.18632/aging.100801.
  • Brown KH, Wuehler SE, Peerson JM. 2001. The importance of zinc in human nutrition and estimation of the global prevalence of zinc deficiency. Food Nutr Bull. 22(2):113–125. doi:10.1177/156482650102200201.
  • Bury NR, Boyle D, Cooper CA. 2011. Iron. Fish Physiol. 31(Part A):201–251. doi:10.1016/S1546-5098(11)31004-7.
  • Can E, Yabanli M, Kehayias G, Aksu Ö, Kocabaş M, Demir V, Kayim M, Kutluyer F, Şeker S. 2012. Determination of bioaccumulation of heavy metals and selenium in tissues of brown trout Salmo trutta macrostigma (Dumeril, 1858) from Munzur Stream, Tunceli, Turkey. Bull Environ Contam Toxicol. 89:1186–1189. doi:10.1007/s00128-012-0824-3.
  • Chali M, Musuka CG, Nyimbili B. 2014. The impact of fishing pressure on Kapenta (Limnothrissa Miodon) production in Lake Kariba, Zambia: a case study of Siavonga District. Int J Agric For Fish. 2014(2):107–116.
  • Chifamba PC. 2007. Trace metal contamination of water at a solid waste disposal site at Kariba, Zimbabwe. Afr J Aquat Sci. 32(1):71–78. doi:10.2989/AJAS.2007.32.1.10.147.
  • Cochrane KL. 1984. The influence of food availability, breeding seasons and growth rate on commercial catches of Limnothrissa miodon (Boulenger) in Lake Kariba. J Fish Biol. 24(6):623–635. doi:10.1111/j.1095-8649.1984.tb04833.x.
  • De Jonge M, Teuchies J, Meire P, Blust R, Bervoets L. 2012. The impact of increased oxygen conditions on metal-contaminated sediments part I: effects on redox status, sediment geochemistry and metal bioavailability. Water Res. 46(7):2205–2214. doi:10.1016/j.watres.2012.01.052.
  • Đikanović V, Skorić S, Gačić Z. 2016. Concentrations of metals and trace elements in different tissues of nine fish species from the Međuvršje Reservoir (West Morava River Basin, Serbia). Arch Biol Sci. 68(4):811–819. doi:10.2298/ABS151104069D.
  • FAO. 1983. Evaluation of certain food additives and contaminants. Thirty-third Report of the Joint FAO/WHO Expert Committee on Food Additives. World Health Organ Tech Rep Ser. 1989;776:1-64. PMID: 2493707.
  • Félix-Bermúdez A, Delgadillo-Hinojosa F, Torres-Delgado EV, Muñoz-Barbosa A. 2020. Does sea surface temperature affect the solubility of iron in mineral dust? The Gulf of California as a case study. J Geophys Res: Oceans. 125(9):e2019JC015999. doi:10.1029/2019JC015999.
  • Gale NL, Adams CD, Wixson BG, Loftin KA, Huang Y. 2004. Lead, zinc, copper, and cadmium in fish and sediments from the Big River and Flat River Creek of Missouri’s Old Lead Belt. Environ Geochem Health. 26:37–49. doi:10.1023/B:EGAH.0000020935.89794.57.
  • Goyer RA, Clarkson TW. 2001. Toxic effects of metals. In: CD Klaasen, editor. Casarett and Doull’s toxicology: the basic science of poisons. New York: McGraw-Hill; p. 811–867.
  • Guo C, Chen Y, Xia W, Qu X, Yuan H, Xie S, Lin LS. 2020. Eutrophication and heavy metal pollution patterns in the water-suppling lakes of China’s south-to-north water diversion project. Sci Total Environ. 711:134543. doi:10.1016/j.scitotenv.2019.134543.
  • Hasimuna OJ, Chibesa M, Ellender BR, Maulu S. 2021. Variability of selected heavy metals in surface sediments and ecological risks in the Solwezi and Kifubwa Rivers, North-western Province, Zambia. Sci Afr. 12:e00822. doi:10.1016/j.sciaf.2021.e00822.
  • Hasimuna OJ, Chibesa M, Mumbula I, Mphande J, Jere WWL, Phiri D, Nawanzi K, Siavwapa S, Maseko AF, Munganga BP, et al. 2023a. Contamination of selected heavy metals in Limnothrissa miodon (Boulenger, 1906) in the four strata of Lake Kariba Zambia: are the consumers at risk? J Environ Sci Health B. doi:10.1080/03601234.2023.2235262.
  • Hasimuna OJ, Maulu S, Chibesa M. 2022. Assessment of heavy metal contamination in water and largescale yellowfish (Labeobarbus marequensis, Smith 1841) from Solwezi River, North-Western Zambia. Cogent Food Agric. 8(1):2121198. doi:10.1080/23311932.2022.2121198.
  • Hasimuna OJ, Maulu S, Monde C, Mweemba M. 2019. Cage aquaculture production in Zambia: Assessment of opportunities and challenges on Lake Kariba, Siavonga district. The Egyptian Journal of Aquatic Research. 45(3):281–285. http://dx.doi.org/10.1016/j.ejar.2019.06.007.
  • Hasimuna OJ, Maulu S, Nawanzi K, Lundu B, Mphande J, Phiri CJ, Kikamba E, Siankwilimba E, Siavwapa S, Chibesa M. 2023b. Integrated agriculture-aquaculture as an alternative to improving small-scale fish production in Zambia. Front Sustainable Food Syst. 7:1161121. doi:10.3389/fsufs.2023.1161121.
  • Hefnawy AE, El-Khaiat HM. 2015. The importance of copper and the effects of its deficiency and toxicity in animal health. Int J Livestock Res. 5(12):1–20. doi:10.5455/ijlr.20151213101704.
  • Hosseini SV, Sobhanardakani S, Miandare HK, Harsij M, Regenstein JM. 2015. Determination of toxic (Pb, Cd) and essential (Zn, Mn) metals in canned tuna fish produced in Iran. J Environ Health Sci Eng. 13:59. doi:10.1186/s40201-015-0215-x.
  • Johnson A, Jin X, Nakada N, Sumpter J. 2020. Learning from the past and considering the future of chemicals in the environment. Science. 367:384–387. doi:10.1126/science.aay6637.
  • Jomova K, Makova M, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Rhodes CJ, Valko M. 2022. Essential metals in health and disease. Chem-Biol Interact 367:110173. doi:10.1016/j.cbi.2022.110173.
  • Kamzati LLJ, Kaonga CC, Mapoma HWT, Thulu FG, Abdel-Dayem SM, Anifowose AJ, Chidya RCG, Chitete-Mawenda U, Sakugawa H. 2020. Heavy metals in water, sediment, fish and associated risks from an endorheic lake located in Southern Africa. Int J Environ Sci Technol. 17:253–266. doi:10.1007/s13762-019-02464-7.
  • Khan MI, Zahoor M, Khan A, Gulfam N, Khisroon M. 2019. Bioaccumulation of heavy metals and their genotoxic effect on freshwater mussel. Bull Environ Contam Toxicol. 102:52–58. doi:10.1007/s00128-018-2492-4.
  • Korkmaz C, Ay Ö, Ersoysal Y, Köroğlu MA, Erdem C. 2019. Heavy metal levels in muscle tissues of some fish species caught from north-east Mediterranean: evaluation of their effects on human health. J Food Compos Anal. 81:1–9. doi:10.1016/j.jfca.2019.04.005.
  • Kotzé PJ, Preez HH, Vuren JV. 1999. Bioaccumulation of copper and zinc in Oreochromis mossambicus and Clarias gariepinus, from the Olifants River, Mpumalanga, South Africa. Water SA. 25:99–110.
  • Kwaansa-Ansah EE, Nti SO, Opoku F. 2019. Heavy metals concentration and human health risk assessment in seven commercial fish species from Asafo Market, Ghana. Food Sci Biotechnol. 28(2):569–579. doi:10.1007/s10068-018-0485-z.
  • Li J, Miao X, Hao Y, Xie Z, Zou S, Zhou C. 2020. Health risk assessment of metals (Cu, Pb, Zn, Cr, Cd, As, Hg, Se) in angling fish with different lengths collected from Liuzhou, China. Int J Environ Res Public Health. 17(7):2192. doi:10.3390/ijerph17072192.
  • Li Y, Cheng X, Liu K, Yu Y, Zhou Y. 2022. A new method for identifying potential hazardous areas of heavy metal pollution in sediments. Water Res. 224:119065. doi:10.1016/j.watres.2022.119065.
  • Lu G, Pan K, Zhu A, Dong Y, Wang WX. 2020. Spatial-temporal variations and trends prediction of trace metals in oysters from the Pearl River Estuary of China during 2011–2018. Environ Pollut. 264:114812. doi:10.1016/j.envpol.2020.114812.
  • Magadza CHD. 2011. Indications of the effects of climate change on the pelagic fishery of Lake Kariba, Zambia–Zimbabwe. Lakes Reservoirs Res Manage. 16(1):15–22. doi:10.1111/j.1440-1770.2011.00462.x.
  • Mandima J, Kortet R, Sarvala J. 2016. Limnothrissa miodon (Boulenger, 1906) in Lake Kariba: daily ration and population food consumption estimates, and potential application to predict the fish stock biomass from prey abundance. Hydrobiologia. 780:99–111. doi:10.1007/s10750-016-2732-8.
  • Mannzhi MP, Edokpayi JN, Durowoju OS, Gumbo J, Odiyo JO. 2021. Assessment of selected trace metals in fish feeds, pond water and edible muscles of Oreochromis mossambicus and the evaluation of human health risk associated with its consumption in Vhembe district of Limpopo Province, South Africa. Toxicol Rep. 8:705–717. doi:10.1016/j.toxrep.2021.03.018.
  • Mela M, Guiloski IC, Doria HB, Rabitto IS, Da Silva CA, Maraschi AC, Prodocimo V, Freire CA, Randi MAF, Ribeiro CO, de Assis HS. 2013. Risks of waterborne copper exposure to a cultivated freshwater Neotropical catfish (Rhamdia quelen). Ecotoxicol Environ Saf. 88:108–116. doi:10.1016/j.ecoenv.2012.11.002.
  • Mishra VK, Tripathi BD. 2008. Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Bioresour Technol. 99(15):7091–7097. doi:10.1016/j.biortech.2008.01.002.
  • Mohiuddin M, Hossain MB, Ali MM, Hossain MK, Habib A, Afrin S, Rakib MRJ, Rahman MS, Yu QJ, AI-Sadoon MK, et al. 2022. Human health risk assessment for exposure to heavy metals in finfish and shellfish from a tropical estuary. J King Saudi Univ Sci. 34(2):102035. doi:10.1016/j.jksus.2022.102035.
  • Moreira DCF, De Sá JSM, Cerqueira IB, Oliveira APF, Morgano MA, Amaya-Farfan J, Quintaes KD. 2012. Mineral inadequacy of oral diets offered to patients in a Brazilian hospital. Nutr Hosp. 27(1):288–297. https://scielo.isciii.es/pdf/nh/v27n1/39_original_28.pdf.
  • Mphande J, Chama L. 2015. Preservation methods and storage periods affect the mineral and moisture composition of freshwater fish species. Int J Food Sci Nutr Eng. 5(3):147–153.
  • Murugan SS, Karuppasamy R, Poongodi K, Puvaneswari S. 2008. Bioaccumulation pattern of zinc in freshwater fish Channa punctatus (Bloch.) after chronic exposure. Turk J Fish Aquat Sci. 8:55–59. https://www.trjfas.org/abstract.php?id=589.
  • Muvengwi J, Muposhi VK, Veremu K, Mbiba M, Nyenda T. 2012. The diet of Limnothrissa miodon and Zooplankton Densities in Sanyati Basin, Lake Kariba. J Environ Sci Eng B. 2012:480–490.
  • Nazanin A, Richard H, Roya K. 2014. Review on iron and its importance for human health. J Res Med Sci. 19(2):164–174. https://www.researchgate.net/publication/261957307.
  • Nölle N, Genschick S, Schwadorf K, Hrenn H, Brandner S, Biesalski HK. 2020. Fish as a source of (micro) nutrients to combat hidden hunger in Zambia. Food Secur. 12:1385–1406. doi:10.1007/s12571-020-01060-9.
  • Nyarko E, Boateng CM, Asamoah O, Edusei MO, Mahu E. 2023. Potential human health risks associated with ingestion of heavy metals through fish consumption in the Gulf of Guinea. Toxicol Rep. 10:117–123. doi:10.1016/j.toxrep.2023.01.005.
  • Omara T, Nteziyaremye P, Akaganyira S, Opio DW, Karanja LN, Nyangena DM, Kiptui BJ, Ogwang R, Epiaka SM, Jepchirchir A, Maiyo A. 2020. Physicochemical quality of water and health risks associated with consumption of African lungfish (Protopterus annectens) from Nyabarongo and Nyabugogo rivers, Rwanda. BMC Res Notes. 13(1):1–6. doi:10.1186/s13104-020-4939-z.
  • Papagiannis I, Kagalou I, Leonardos J, Petridis D, Kalfakakou V. 2004. Copper and zinc in four freshwater fish species from Lake Pamvotis (Greece). Environ Int. 30(3):357–362. doi:10.1016/j.envint.2003.08.002.
  • Paschoalini AL, Bazzoli N. 2021. Heavy metals affecting Neotropical freshwater fish: a review of the last 10 years of research. Aquat Toxicol. 237:105906. doi:10.1016/j.aquatox.2021.105906.
  • Rader KJ, Carbonaro RF, van Hullebusch ED, Baken S, Delbeke K. 2019. The fate of copper added to surface water: field, laboratory, and modelling studies. Environ Toxicol Chem. 38(7):1386–1399. doi:10.1002/etc.4440.
  • Rahmani J, Fakhri Y, Shahsavani A, Bahmani Z, Urbina MA, Chirumbolo S, Karamti H, Moradi B, Bay A, Bjørklund G. 2018. A systematic review and meta-analysis of metal concentrations in canned tuna fish in Iran and human health risk assessment. Food Chem Toxicol. 118:753–765. doi:10.1016/j.fct.2018.06.023.
  • Rajeshkumar S, Li X. 2018. Bioaccumulation of heavy metals in fish species from the Meiliang Bay, Taihu Lake, China. Toxicol Rep. 5:288–295. doi:10.1016/j.toxrep.2018.01.007.
  • Renu K, Mukherjee AG, Gopalakrishnan AV, Wanjari UR, Kannampuzha S, Murali R, Veeraraghavan VP, Vinayagam S, Paz-Montelongo S, George A, et al. 2023. Protective effects of macromolecular polyphenols, metal (zinc, selenium, and copper)-Polyphenol complexes, and pectin in different organs with an emphasis on arsenic poisoning: a review. Int J Biol Macromol. 253:126715. doi:10.1016/j.ijbiomac.2023.126715.
  • Reznick D, Bryant MJ, Bashey F. 2002. r and k-selection revisited: the role of population regulation in life-history evolution. Ecology. 83(6):1509–1520. doi:10.1890/0012-9658(2002)083[1509:RAKSRT]2.0.CO;2.
  • Riise G, Haaland SL, Xiao Y. 2023. Coupling of iron and dissolved organic matter in lakes–selective retention of different size fractions. Aquat Sci. 85(2):57. doi:10.1007/s00027-023-00956-w.
  • Satarug S, Garret SH, Sens MA, Sens DA, Pongrakhananon V. 2010. Heavy metals induce oxidative stress and trigger oxidative DNA damage and apoptosis in renal and hepatic cells. Toxicol Lett. 133(1):45–52.
  • Simukoko CK, Mwakalapa EB, Bwalya P, Muzandu K, Berg V, Mutoloki S, Polder A, Lyche JL. 2021. Assessment of heavy metals in wild and farmed tilapia (Oreochromis niloticus) on Lake Kariba, Zambia: implications for human and fish health. Food Addit Contam A. 39:74–91 doi:10.1080/19440049.2021.1975830.
  • Soylak M, Unsal YE. 2010. Chromium and iron determinations in food and herbal plant samples by atomic absorption spectrometry after solid phase extraction on single-walled carbon nanotubes (SWCNTs) disk. Food Chem Toxicol. 48(6):1511–1515. doi:10.1016/j.fct.2010.03.017.
  • Taslima K, Al-Emran M, Rahman MS, Hasan J, Ferdous Z, Rohani MF, Shahjahan M. 2022. Impacts of heavy metals on early development, growth and reproduction of fish–A review. Toxicol Rep. 9:858–868. doi:10.1016/j.toxrep.2022.04.013.
  • Traven L, Marinac-Pupavac S, Žurga P, Linšak Ž, Žeželj SP, Glad M, Linšak DT, Cenov A. 2023. Arsenic (As), copper (Cu), zinc (Zn) and selenium (Se) in northwest Croatian seafood: a health risks assessment. Toxicol Rep. 11:413–419. doi:10.1016/j.toxrep.2023.10.012.
  • Tumbare MJ. 2008. Managing Lake Kariba sustainably: threats and challenges. Zambezi River Authority, Lusaka, Zambia. Management of Environmental Quality an International Journal. 19(6):731–739. doi:10.1108/14777830810904948.
  • [USEPA] United States Environmental Protection Agency. 2008. Human health risk assessment protocol for hazardous waste combustion facilities. EPA530-R-05-006.
  • Ustaoglu F, Islam MS. 2020. Potential toxic elements in the sediment of some rivers at Giresun, Northeast Turkey: A preliminary assessment for ecotoxicological status and health risk. Ecol Indic. 113:106237. doi:10.1016/j.ecolind.2020.106237.
  • Vu CT, Lin C, Yeh G, Villanueva MC. 2017. Bioaccumulation and potential sources of heavy metal contamination in fish species in Taiwan: assessment and possible human health implications. Environ Sci Pollut Res Int. 24(23):19422–19434. doi:10.1007/s11356-017-9590-4.
  • Wang S, Shi X. 2001. Molecular mechanisms of metal toxicity and carcinogenesis. Mol Cell Biochem. 222(1–2):3–9. doi:10.1023/A:1017918013293.
  • WHO. 1989. Toxicological evaluation of certain food additives and contaminants. WHO Food Additives Series, No. 24. Cambridge University Press.
  • Yahya AN, Mohamed SK, Mohamed AG. 2018. Environmental pollution by heavy metals in the aquatic ecosystems of Egypt. Open Access J Toxicol. 3(1):555603. doi:10.19080/OAJT.2018.03.555603.
  • Yang QQ, Wang SL, Liu WJ, Yang YW, Jiang SQ. 2020. Spatial distribution of perfluoroalkyl acids (PFAAs) and their precursors and conversion of precursors in seawater deeply affected by a city in China. Ecotoxicol Environ Saf 194:110404. doi:10.1016/j.ecoenv.2020.110404.
  • Yap CK, Al-Mutairi KA. 2022. Copper and zinc levels in commercial marine fish from Setiu, east coast of Peninsular Malaysia. Toxics. 10(2):52. doi:10.3390/toxics10020052.
  • Yi Y, Tang C, Yi T, Yang Z, Zhang S. 2017. Health risk assessment of heavy metals in fish and accumulation patterns in the food web in the upper Yangtze River, China. Ecotoxicol Environ Saf. 145:295–302. doi:10.1016/j.ecoenv.2017.07.022.
  • Yozukmaz A, Yabanli M, Sel F. 2018. Heavy metal bioaccumulation in Enteromorpha intestinalis,(L.) Nees, a macrophytic algae: the example of Kadin Creek (Western Anatolia). Braz Arch Biol Technol. 61. doi:10.1590/1678-4324-2018160777.
  • Yunusa MA, Igwe EC, Mofoluke AO. 2023. Heavy metals contamination of water and fish-a review. FUDMA J Sci. 7(1):110–118. doi:10.33003/fjs-2023-0701-1255.
  • Zhang Y, Zhang M, Yu W, Li J, Kong D. 2022. Ecotoxicological risk ranking of 19 metals in the lower Yangtze River of China based on their threats to aquatic wildlife. Sci Total Environ. 812:152370. doi:10.1016/j.scitotenv.2021.152370.