270
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Feasibility study of scapula bone as a next-generation material for biomedical applications

, , , , &
Article: 2337174 | Received 08 Aug 2023, Accepted 09 Feb 2024, Published online: 20 Apr 2024

References

  • Alexander RM, Pond CM. 1992. Locomotion and the design of limb bones. J Zool. 226(4):515–524.
  • ASTM International. ASTM D790-07 standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. 2007.
  • Bar-On B, Weisse B, Fischer MS. 2018. The shoulder girdle of the European roe deer and its biomechanical properties. Anat Rec. 301(3):518–527. doi:10.1002/ar.23719.
  • Beckers A, Schenck C, Klesper B, Koebke J. 1998. Comparative densitometric study of iliac crest and scapula bone in relation to osseous integrated dental implants in microvascular mandibular reconstruction. J Cranio-Maxillofacial Surg. 26:75–83. doi:10.1016/S1010-5182(98)80043-7.
  • Blob RW, Biewener AA. 2001. Mechanics of limb bone loading during terrestrial locomotion in the green iguana (Iguana iguana) and American alligator (Alligator mississippiensis). J Exp Biol. 204(6):1099–1122. doi:10.1242/jeb.204.6.1099.
  • Boskey AL, Posner AS. 1984. Bone structure, composition, and mineralization. Orthop Clin N Am. 15(3):597–612. doi:10.1016/S0030-5898(20)31258-X.
  • Carlson KJ, Judex S. 2007. Functional morphology of the North American beaver (Castor canadensis): implications for skeletal system design. J Morphol. 268(4):281–290.
  • Charles O, Bechtol MD. 1980. Biomechanics of the shoulder. Clin Orthop Relat Res. 146:37–41.
  • Currey JD. 2006. Bones: structure and mechanics. Princeton: Princeton University Press.
  • Fratzl P, Gupta HS, Paschalis EP, Roschger P. 2004. Structure and mechanical quality of the collagen–mineral nano-composite in bone. J Mater Chem. 14(14):2115–2123. doi:10.1039/B402005G.
  • Fratzl P, Weinkamer R. 2007. Nature's hierarchical materials. Prog Mater Sci. 52(8):1263–1334. doi:10.1016/j.pmatsci.2007.06.001.
  • Galvez-Lopez E. 2020. Quantifying morphological adaptations using direct measurements: the carnivoran appendicular skeleton as a case study. Anat Rec. 304:1–27. doi:10.1002/ar.24453.
  • Katsifis G, Kruse H, Lewin W, Al Maruf A, Clark JR, McKenzie DR, Suchowerska N. 2023. Micro-CT analysis of implanted poly-ether-ether-ketone scaffolds: plasma immersion ion implantation increases osteoconduction. Adv Eng Mater. 25:2201297. doi:10.1002/adem.202201297.
  • Kruse HV, Lewin WT, Suchowerska N, S D, Al Maruf A, Cheng K, Clark JR, McKenzie DR. 2022. Plasma immersion ion-implanted 3D-printed PEEK bone implants: in vivo sheep study shows strong osseointegration. Plasma Processes Polym. 19(7):2100244. doi:10.1002/ppap.202100244.
  • Kurt S, Selviler-Sizer S, Onuk B, Kabak M. 2022. Comparison of sheep scapula models created with polylactic acid and thermoplastic polyurethane filaments by three-dimensional modelling. Anat Histol Embryol. 51:244–249. doi:10.1111/ahe.12784.
  • Lin C-Y, Kang J-H. 2021. Mechanical properties of compact bone defined by the stress-strain curve measured using uniaxial tensile test: a concise review and practical guide. Materials (Basel). 14(15):4224.
  • Luo C, Liao J, Zhenglin Zhu X, Lin X, Huang W. 2019. Analysis of mechanical properties and mechanical anisotropy in canine bone tissues of various ages. Bio Med Res Int. 2019:3503152.
  • Martiniaková M, Grosskopf B, Omelka R, Vondráková M, Bauerová M. 2006. Differences among species in compact bone tissue microstructure of mammalian skeleton: use of a discriminant function analysis for species identification. J Forensic Sci. 51(6):1235–1239. doi:10.1111/j.1556-4029.2006.00260.x.
  • Mysore THM, Patil AY, Raju GU, Banapurmath NR, Bhovi PM, Afzal A, Alamri S, Saleel CA. 2021. Investigation of mechanical and physical properties of big sheep horn as an alternative biomaterial for structural applications. Materials (Basel). 14:4039. doi:10.3390/ma14144039.
  • Pathak SK, Archana Mahapatra A, Pawade AM. 2021. Biometrical analysis of scapula bone of fishing cat, leopard cat and small Indian civet. Appl Biol Res. 23(1):110–111. DOI:10.5958/0974-4517.2021.00015.X.
  • Price C, Herman BC, Lufkin T, Goldman HM, Jepsen KJ. 2005. Genetic variation in bone growth patterns defines adult mouse bone fragility. J Bone Miner Res. 20(11):1983–1991. doi:10.1359/JBMR.050707.
  • Reilly DT, Burstein AH. 1975. The elastic and ultimate properties of compact bone tissue. J Biomech. 8(6):393–405. doi:10.1016/0021-9290(75)90075-5.
  • Reilly DT, Currey JD. 2000. The effects of damage and microcracking on the impact strength of bone. J Biomech. 33(3):337–343. doi:10.1016/S0021-9290(99)00167-0.
  • Shaw JM, Stock JT. 2009. The influence of body proportions on thermoregulation: a comparison of three human groups. Am J Phys Anthropol. 140(2):199–209. doi:10.1002/ajpa.21163.
  • Skedros JG, Dayton MR, Sybrowsky CL, Bloebaum RD, Bachus KN. 2003a. The influence of collagen fiber orientation and other histocompositional characteristics on the mechanical properties of equine cortical bone. J Exp Biol. 206(17):2997–3008.
  • Skedros JG, Dayton MR, Sybrowsky CL, Bloebaum RD, Bachus KN. 2003b. The influence of collagen fiber orientation and other histocompositional characteristics on the mechanical properties of equine cortical bone. J Exp Biol. 206(20):537–3489.
  • Spalthoff S, Zimmerer R, Dittmann J, Korn P, Gellrich N-C, Jehn P. 2019. Scapula pre-augmentation in sheep with polycaprolactone tricalcium phosphate scaffolds. J Stomatol Oral Maxillofac Surg. 120(2):116–121. doi:10.1016/j.jormas.2018.10.001.
  • Stacy GS, Yousefzadeh DK. 2000. Scapular duplication. Pediatr Radiol. 30:412–414. doi:10.1007/s002470050774.
  • Turner CH, Burr DB. 1993. Basic biomechanical measurements of bone: a tutorial. Bone. 14(4):595–608. doi:10.1016/8756-3282(93)90081-K.
  • Yeni YN, Brown CU. 1998. Influence of bone composition and apparent density on fracture toughness of the human femur and tibia. Bone. 22(1):79–84. doi:10.1016/S8756-3282(97)00227-5.
  • Yeni YN, Fyhrie DP. 2001. A rate-dependent microcrack-bridging model that can explain the strain rate dependency of cortical bone apparent yield strength. J Biomech. 34(11):1347–1357.