122
Views
3
CrossRef citations to date
0
Altmetric
Articles

An approach for prediction of flood hydrograph at outlet of an ungauged basin using modified dynamic wave model

ORCID Icon &
Pages 357-367 | Received 15 Jul 2020, Accepted 07 Mar 2021, Published online: 23 Mar 2021

References

  • Akbari, G. 2013. A case study of food dynamic wave simulation in natural water-ways using numerical solution of unsteady fows. Cmce J, 3(2), 66–76.
  • Akbari, G.H., and Barati, R. 2012. Comprehensive analysis of flooding in unmanaged catchments. Proceedings of the Institution of Civil Engineers-Water Management, 165(4), 229–238.
  • Akbari, G.H., Nezhad, A.H., and Barati, R. 2012. Developing a model for analysis of uncertainties in prediction of floods. J. Adv. Res, 3(1), 73–79. 10.1016/j.jare.2011.04.004
  • Amein, M. 1968. An implicit method for numerical flood routing. J. Water Resour, 4, 719–726. 4 10.1029/WR004i004p00719
  • Amein, M., and Chu, H.L. 1975. Implicit numerical modeling of unsteady flows. J. Hydraul. Div, 101, 717–731.
  • Amein, M., and Fang, C.S. 1970. Implicit flood routing in natural channels. J. Hydraul. Div, 96, 2481–2500. 12 10.1061/JYCEAJ.0002796
  • Baltzer, R.A., and Lai, C. 1968. Computer simulation of unsteady flows in waterways. J. Hydraul. Div, 94, 1083–1117. 4 10.1061/JYCEAJ.0001842
  • Barati, R. 2013. Application of excel solver for parameter estimation of the nonlinear Muskingum models. KSCE J. Civ. Eng, 17(5), 1139–1148. 10.1007/s12205-013-0037-2
  • Barati, R., Akbari, G.H., and Rahimi, S. 2013. flood routing of an unmanaged river basin using Muskingum–Cunge model; Field application and numerical experiments. Casp. J. Appl. Sci. Res, 2, 6.
  • Barati., R., Rahimi., S., and Akbari., H.G. 2012. Analysis of dynamic wave model for flood routing in natural rivers. Water Sci. Eng., 5(3), 243–258. 10.3882/j.1674-2370.2012.03.001
  • Chow, V.T., Maidment, D.R., and Mays, L.W. 1988. Applied Hydrology. Singapore:McGraw-Hill Book Company.
  • Chu, H.J. 2009. The Muskingum flood routing model using a neuro-fuzzy approach. KSCE J. Civ. Eng, 13(5), 371–376. 10.1007/s12205-009-0371-6
  • Delis, A.I., Skeels, C.P., and Ryrie, S.C. 2000. Implicit high resolution methods for modeling one-dimensional open channel flow. J. Hydraul. Res, 38, 369–382. 5 10.1080/00221680009498318
  • Fread, D.L. 1973. Techniques for implicit dynamic routing in rivers with tributaries. J. Water Resour, 9, 918–926. 4 10.1029/WR009i004p00918
  • Green, I., and Stephenson, D. (1985). “Comparison of urban drainage models for use in South Africa”. WRC Report No 115/6/86. Water Research Commission, Pretoria, RSA.
  • Hosseini, S.M. 2009. Application of spreadsheets in developing flexible multiple‐reach and multiple‐branch methods of Muskingum flood routing. Comput. Appl. Eng. Educ., 17(4), 448–454. 10.1002/cae.20234
  • Keskin, E.M., and Agiralioglu, N. 1997. A simplified dynamic model for flood routing in rectangular channels, J. Hydrol., Elsevier, Vol. 202 302–314. doi:10.1016/S0022-1694(97)00072-3
  • Krishnappan, G.B., and Altinakar, S.M. 2006. Numerical modeling of unsteady flows in rivers, Encyclopedia of Hydrological Sciences. M.G. Anderson ed. John Wiley & Sons, Ltd. https://doi.org/10.1002/0470848944.hsa146
  • Liggett, J.A., and Cunge, J.A. 1975. Numerical methods of solution of the unsteady flow equations, Unsteady flow in open channels, vol. 1. K. Mahmood and V. Yevjevich eds. Water Resources Publications:Fort Collins, CO. pp. 89–182.
  • Liggett, J.A., and Woolhiser, D.A. 1967. Difference solutions of shallow-water equation. J. Eng. Mech, 93, 39–71.
  • Moghaddam, M.A., and Firoozi, B. 2011. Development of dynamic flood wave routing in natural rivers through implicit numerical method. Am. J. Sci. Res, 14, 6–17.
  • Moramarco, T., Pandolfo, C., and Singh, V.P. 2008. Accuracy of kinematic wave approximation for flood routing, II: Unsteady analysis. J. Hydrol, 13(11), 1089–1096. 10.1061/(ASCE)1084-0699(2008)13:11(1089)
  • O’Donnell, T. 1985. A direct three-parameter Muskingum procedure incorporating lateral inflow, J Hydraul Eng. American Society of Civil Engineers [ ASCE]. Vol. 30, 479–496.
  • Perumal, M., and Sahoo, B. 2008. Volume conservation controversy of the variable parameter Muskingum–Cunge method. J Hydraul Eng, 134(4), 475–485. 10.1061/(ASCE)0733-9429(2008)134:4(475)
  • Perumal, M., Tayfur, G., Rao, C.M., and Gurarslan, G. 2017. Evaluation of a physically based quasi-linear and a conceptually based nonlinear Muskingum methods. J. Hydrol, 546, 437–449. 10.1016/j.jhydrol.2017.01.025
  • Ponce, V.M., and Lugo, A. 2001. Modeling looped ratings in Muskingum-Cunge routing. J. Hydrol. Eng., 6(2), 119–124. 10.1061/(ASCE)1084-0699(2001)6:2(119)
  • Preissmann, A. 1961. Propagation des Intumescences Dans Les Canaux et Rivkres, Proceedings of the First Congress of French Association for Computation, Grenoble, France. pp. 433–442.
  • Retsinis, E., Daskalaki, E., and Papanicolaou, P. (2018). “Hydraulic and hydrologic analysis of unsteady flow in prismatic open channel”. In: Proceedings of the 3rd EWAS International Conference, Lefkada Island, Greece, pp. 8.
  • Retsinis, E., Daskalaki, E., and Papanicolaou, P. (2019). “Dynamic flood wave routing in prismatic channels with hydraulic and hydrologic methods”. Journal of water supply: Research & Technology-AQUA.
  • Ritter, A., and Munoz-cupena., R. (2013). Performance evaluation of hydrological models: Statistical significance for reducing subjectivity in goodness-of-fit assessments. J. Hydrol, 480(13), 33–45. 10.1016/j.jhydrol.2012.12.004
  • Samani, H.M., and Shamsipour, G.A. 2004. Hydrologic flood routing in branched river systems via nonlinear optimization. J. Hydraul. Res, 42(1), 55–59. 10.1080/00221686.2004.9641183
  • Song, X.M., Kong, F.Z., and Zhu, Z.X. 2011. Application of Muskingum routing method with variable parameters in ungauged basin. Water Sci. Eng, 4(1), 1–12. 10.3882/j.674-2370.2011.01.001
  • Strelkoff, T. 1970. Numerical solution of saint-Venant equations. J. Hydraul. Div, 96, 223–252. 1 10.1061/JYCEAJ.0002262
  • Sulistyono., A.B., and Wiryanto., H.L. (2017). “Investigation of flood routing by a dynamic wave model in trapezoidal channels”. AIP Conference Proceedings, Pullman hotel, Indonesia,; 10.1063/1.4994423
  • Tsai, C.W. 2003. Applicability of kinematic, noninertia, and quasi-steady dynamic wave models to unsteady flow routing. J Hydraul Eng, 129(8), 613–627. 10.1061/(ASCE)0733-9429(2003)129:8(613)
  • Wang, G.T., Chen, S., Boll, J., and Singh, V.P. 2003. Nonlinear convection-diffusion equation with mixing-cell method for channel flood routing. J. Hydrol. Eng., 8(5), 259–265. 10.1061/(ASCE)1084-0699(2003)8:5(259)
  • Wang, G.T., Yao, C., Okoren, C., and Chen, S. 2006. 4-Point FDF of Muskingum method based on the complete St Venant equations. J. Hydrol., 324(1–4), 339–349. 10.1016/j.jhydrol.2005.10.010
  • Xia, J., Lin, B., Falconer, R.A., and Wang, Y. (2012). “Modelling of man-made flood routing in the lower Yellow River, China”. Proceedings of the Institution of Civil Engineers-Water Management (Vol. 165, No. 7, pp. 377–391). Thomas Telford Ltd.
  • Zhang, X.Q., and Bao, W.M. 2012. Modified Saint-Venant equations for flow simulation in tidal rivers. Water Sci. Eng., 5(1), 34–45. 10.3882/j.1674-2370.2012.01.004
  • Zhang, Y. 2005. Simulation of open channel network flow using finite element approach. Commun. Nonlinear Sci. Numer. Simul., 10(5), 467–478. 10.1016/j.cnsns.2003.12.006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.