284
Views
10
CrossRef citations to date
0
Altmetric
Articles

Evaluation of empirical relationships to estimate the hydraulic conductivity of borehole soil samples

ORCID Icon & ORCID Icon
Pages 368-377 | Received 09 Sep 2020, Accepted 10 Mar 2021, Published online: 01 Apr 2021

References

  • Alabi, A.A., Bello, R., Ogungbe, A.S., and Oyerinde, H.O. (2010). “Determination of groundwater potential in Lagos State University, Ojo; using geoelectric methods (vertical electrical sounding and horizontal profiling).” Rep. Opin., 2(5),68–75.
  • Alyamani, M.S., and Sen, Z. (1993). “Determination of hydraulic conductivity from complete grain‐size distribution curves.” Ground Water, 31(4),551–555. doi:10.1111/j.1745-6584.1993.tb00587.x
  • Anomohanran, O. (2013). “Geophysical investigation of groundwater potential in Ukelegbe, Nigeria.” J. Appl. Sci., 13(1),119–125. doi:10.3923/jas.2013.119.125
  • ASTM (2006). “Standard D2434 - Permeability of granular soils (Constant head).” West Conshohocken, PA, USA.
  • ASTM (2007). “Standard D422 - Particle-size analysis of soils.” West Conshohocken, PA, USA.
  • ASTM (2010). “Standard D2487 - Classification of soils for engineering purposes (Unified Soil Classification System).” West Conshohocken, PA, USA.
  • Bear, J. (1972). Dynamics of fluids in porous media, Elsevier Publishing Company, Amsterdam, 1–764.
  • Beyer, W. (1964). “On the determination of hydraulic conductivity of gravels and sands from grain-size distributions.” Wasserwirtschaft-wassertechnik., 14(6),165–169.
  • Boadu, F.K. (2000). “Hydraulic conductivity of soils from grain-size distribution: New models.” J. Geotech. Geoenviron. Eng., 126(8),739–746. doi:10.1061/(ASCE)1090-0241(2000)126:8(739)
  • Cabalar, A.F., and Akbulut, N. (2016). “Evaluation of actual and estimated hydraulic conductivity of sands with different gradation and shape.” SpringerPlus, 5(1), 820. doi:10.1186/s40064-016-2472-2
  • Carman, P.C. (1937). “Fluid flow through granular beds.” Trans. Inst. Chem. Eng., 15, 150–166.
  • Carman, P. C. (1956). “Flow of gases through porous media.” Butterworths Scientific Publications, London.
  • Carrier, W.D. (2003). “Goodbye, hazen; hello, kozeny-carman.” J. Geotech. Geoenviron. Eng., 129(11),1054–1056. doi:10.1061/(ASCE)1090-0241(2003)129:11(1054)
  • Chandel, A., Shankar, V., and Alam, M.A. (2021). “Experimental investigations for assessing the influence of fly ash on the flow through porous media in Darcy regime.” Water Science and Technology : A Journal of the International Association on Water Pollution Research, 1–11. doi: 10.2166/wst.2021.042. 83 1
  • Chapuis, R.P., Allaire, V., Marcotte, D., Chouteau, M., Acevedo, N., and Gagnon, F., (2005). “Evaluating the hydraulic conductivity at three different scales within an unconfined sand aquifer at Lachenalia, Quebec.” Can. Geotech. J., 42 (4), 1212–1220. doi:10.1139/t05-045
  • Cheng, C., and Chen, X. (2007). “Evaluation of methods for determination of hydraulic properties in an aquifer–aquitard system hydrologically connected to a river.” Hydrogeol. J., 15(4),669–678. doi:10.1007/s10040-006-0135-z
  • Cirpka, O.A. (2003). “Environmental fluid mechanics I: flow in natural hydrosystems.” J. Hydrol., 283, 53–66.
  • Deb, S.K., and Shukla, M.K. (2012). “Variability of hydraulic conductivity due to multiple factors.” Am. J. Environ. Sci., 8(5),489–502. doi:10.3844/ajessp.2012.489.502
  • Fair, G.M., and Hatch, L.P. (1933). “Fundamental factors governing the streamline flow of water through sand.” J. Am Water Works Assn., 25(11), 1551–1563. doi:10.1002/j.1551-8833.1933.tb18342.x
  • Harleman, D.R.F., Melhorn, P.F., and Rumer, R.R. (1963). “Dispersion-permeability correlation in porous media.” J. Hydraul. Div., 89(2),67–85. doi:10.1061/JYCEAJ.0000863
  • Hazen, A. (1892). “Some physical properties of sands and gravels, with special reference to their use in filtration.” Massachusetts State Board of Health, 24th Annual Report, 539–556.
  • Hong, B., Li, X.A., Wang, L., Li, L., Xue, Q., and Meng, J. (2020). “Using the effective void ratio and specific surface area in the Kozeny–Carman equation to predict the hydraulic conductivity of loess.” Water, 12(1),1–24.
  • Hussain, F., and Nabi, G. (2016). “Empirical formulae evaluation for hydraulic conductivity determination based on grain size analysis.” Int. J. Res. Env. Std., 3(3),26–32.
  • Ishaku, J.M., Gadzama, E.W., and Kaigama, U. (2011). “Evaluation of empirical formulae for the determination of hydraulic conductivity based on grain-size analysis.” J. Geol. Min. Res., 3(4),105–113.
  • Kango, R., Shankar, V., and Alam, M.A. (2019). “Evaluation of hydraulic conductivity based on grain size distribution parameters using power function model.” Water Supply, 19(2),596–602. doi:10.2166/ws.2018.106
  • Kasenow, M. (2002). “Determination of hydraulic conductivity from grain size analysis.” Water resources publication, LLC, Highland Ranch, CO, USA, 1–83.
  • Kozeny, J. (1927). “Via capillary conduit the water in the ground.” R. Acad. Sci. Vienna Proc. Class I., 136, 271–306.
  • Mallet, C., and Pacquant, J. (1951). “Earth dams.” Editions Eyrolles, Paris, 1–345.
  • Naeej, M., Naeej, M.R., Salehi, J., and Rahimi, R. (2017). “Hydraulic conductivity prediction based on grain-size distribution using M5 model tree.” Geomech. Geoeng., 12(2),107–114. doi:10.1080/17486025.2016.1181792
  • Odong, J. (2007). “Evaluation of empirical formulae for determination of hydraulic conductivity based on grain-size analysis.” J. Am. Sci., 3(3),54–60.
  • Omojola, A.D., Akinpelu, S.J., Adesegun, A.M., and Akinyemi, O.D. (2014). “a micro study to determine porosity, hydraulic conductivity, permeability and the discharge rate of groundwater in Ondo State Riverbeds, Southwestern Nigeria.” Int. J. Geosci., 5(11),1254–1262. doi:10.4236/ijg.2014.511104
  • Perkins, K.S. (2011). “Measurement and modeling of unsaturated hydraulic conductivity.” In: Elango L. (ed),  Hydraulic conductivity–issues, determination and applications, Intech, Rijeka, Croatia, 419–434.
  • Pliakas, F., and Petalas, C. (2011). “Determination of hydraulic conductivity of unconsolidated river alluvium from permeameter tests, empirical formulas and statistical parameters effect analysis.” Water Resour. Manage., 25(11),2877–2899. doi:10.1007/s11269-011-9844-8
  • Pucko, T., and Verbovsek, T. (2015). “Comparison of hydraulic conductivities by grain-size analysis, pumping, and slug tests in Quaternary gravels, NE Slovenia.” Open Geosci., 7(1),308–317.
  • Qiu, Z.F., and Wang, J.J. (2015). “Experimental study on the anisotropic hydraulic conductivity of a sandstone–mudstone particle mixture.” J. Hydrol. Eng. (ASCE), 20(11), 04015029. doi:10.1061/(ASCE)HE.1943-5584.0001220
  • Riha, J. (2020). “Groundwater flow problems and their modelling.” In Zelenakova M., Fialova J., Negm A. (eds), Assessment and protection of water resources, Springer, Cham, Czech Republic, 175–199.
  • Riha, J., Petrula, L., Hala, M., and Alhasan, Z. (2018). “Assessment of empirical formulae for determining the hydraulic conductivity of glass beads.” J. Hydrol. Hydromech., 66(3),337–347. doi:10.2478/johh-2018-0021
  • Rosas, J., Lopez, O., Missimer, T.M., Coulibaly, K.M., Dehwah, A.H., Sesler, K., Lujan, L.R., and Mantilla, D. (2014). “Determination of hydraulic conductivity from grain‐size distribution for different depositional environments.” Ground Water, 52(3),399–413. doi:10.1111/gwat.12078
  • Sepahvand, A., Singh, B., Sihag, P., Nazari Samani, A., Ahmadi, H., and Fiz Nia, S. (2019). “Assessment of the various soft computing techniques to predict sodium absorption ratio (SAR).” ISH J. Hydrol. Eng., 1–12. doi:10.1080/09715010.2019.1595185
  • Sihag, P., Singh, V.P., Angelaki, A., Kumar, V., Sepahvand, A., and Golia, E. (2019). “Modelling of infiltration using artificial intelligence techniques in semi-arid Iran.” Hydrol. Sci. J., 64(13), 1647–1658. doi:10.1080/02626667.2019.1659965
  • Singh, B., Sihag, P., Pandhiani, S.M., Debnath, S., and Gautam, S. (2019). “Estimation of permeability of soil using easy measured soil parameters: Assessing the artificial intelligence-based models.” ISH J. Hydrol. Eng., 1–11.
  • Slichter, C.S. (1899). “Theoretical investigation of the motion of ground waters.” The 19th Ann. Rep., US Geophys Survey, 304–319.
  • Song, J., Chen, X., Cheng, C., Wang, D., Lackey, S., and Xu, Z. (2009). “Feasibility of grain-size analysis methods for determination of vertical hydraulic conductivity of streambeds.” J. Hydrol., 375(3–4), 428–437. doi:10.1016/j.jhydrol.2009.06.043
  • Terzaghi, K. (1925). “Principles of soil mechanics.” Eng. News-Record, 95(19–27), 19–32.
  • Todd, D.K., and Mays, L.W. (2005). Groundwater Hydrology. John Wiley & Sons, New York.
  • VNIIG, (1991). “Recommendations on the laboratory methods of investigation of the permeability and filtration stability of soils.” P 49-90/VNIIG. The B. E. Vedeneev All-Russia Research Institute of Hydraulic Engineering, JSC, Leningrad, 1–93.
  • Vukovic, M., and Soro, A. (1992). “Determination of hydraulic conductivity of porous media from grain-size composition.” Water resources publications, Littleton, CO, 71–76.
  • Yoon, S., Lee, S.R., Kim, Y.T., and Go, G.H. (2015). “Estimation of saturated hydraulic conductivity of Korean weathered granite soils using a regression analysis.” Geomech. Eng., 9(1),101–113. doi:10.12989/gae.2015.9.1.101

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.