872
Views
17
CrossRef citations to date
0
Altmetric
Research Article

Mathematical models to predict COVID-19 outbreak : An interim review

, &

References

  • D. Adam, Special report: The simulations driving the world’s response to COVID-19., Nature 580 (7803) (2020) 316.
  • COVID-19 coronavirus, (2020)., URL https://www.worldometers.info/coronavirus/, Accessed on May 21, 2020.
  • M. Haghani, M. C. Bliemer, F. Goerlandt, J. Li, The scientific literature on Coronaviruses, COVID-19 and its associated safety-related research dimensions: A scientometric analysis and scoping review, Safety Science (2020) 104806.
  • Y. B. de Bruin, A.-S. Lequarre, J. McCourt, P. Clevestig, F. Pigazzani, M. Z. Jeddi, C. Colosio, M. Goulart, Initial impacts of global risk mitigation measures taken during the combatting of the COVID-19 pandemic, Safety Science (2020) 104773.
  • Z. Liu, P. Magal, O. Seydi, G. Webb, A COVID-19 epidemic model with latency period, Infectious Disease Modelling.
  • B. J. Quilty, S. Clifford, S. Flasche, R. M. Eggo, et al., Effectiveness of airport screening at detecting travellers infected with novel coronavirus (2019-nCoV), Eurosurveillance 25 (5) (2020) 2000080.
  • K. Liang, Mathematical model of infection kinetics and its analysis for COVID-19, SARS and MERS, Infection, Genetics and Evolution (2020) 104306.
  • J. Luo, When Will COVID-19 End? Data-Driven Prediction, Tech. Rep., Working paper. https://ddi.sutd.edu.sg, 2020.
  • L. Peng, W. Yang, D. Zhang, C. Zhuge, L. Hong, Epidemic analysis of COVID-19 in China by dynamical modeling, arXiv preprintarXiv:2002.06563.
  • K. Chatterjee, K. Chatterjee, A. Kumar, S. Shankar, Healthcare impact of COVID-19 epidemic in India: A stochastic mathematical model, Medical Journal Armed Forces India.
  • W. O. Kermack, A. G. McKendrick, Contributions to the mathematical theory of epidemics–I. 1927., 1991.
  • W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proceedings of the royal society of london. Series A, Containing papers of a mathematical and physical character 115 (772) (1927) 700–721.
  • N. Goddard, J. Kyncl, J. Watson, Appropriateness of thresholds currently used to describe influenza activity in England., Communicable disease and public health 6 (3) (2003) 238–245.
  • Y. Wang, X. You, Y. Wang, L. Peng, Z. Du, S. Gilmour, D. Yoneoka, J. Gu, C. Hao, Y. Hao, et al., Estimating the basic reproduction number of COVID-19 in Wuhan, China, Zhonghua liu xing bing xue za zhi= Zhonghua liuxingbingxue zazhi 41 (4) (2020) 476–479.
  • Y. Alimohamadi, M. Taghdir, M. Sepandi, The estimate of the basic reproduction number for novel coronavirus disease (covid-19): A systematic review and meta-analysis, Journal of Preventive Medicine and Public Health.
  • C. You, Y. Deng, W. Hu, J. Sun, Q. Lin, F. Zhou, C. H. Pang, Y. Zhang, Z. Chen, X.-H. Zhou, Estimation of the time-varying reproduction number of COVID-19 outbreak in China, International Journal of Hygiene and Environmental Health (2020) 113555.
  • Z. Du, X. Xu, Y. Wu, L. Wang, B. J. Cowling, L. A. Meyers, Serial Interval of COVID-19 among Publicly Reported Confirmed Cases.
  • Y. Fang, Y. Nie, M. Penny, Transmission dynamics of the COVID-19 outbreak and effectiveness of government interventions: A data- driven analysis, Journal of medical virology 92 (6) (2020) 645–659.
  • R. Singh, R. Adhikari, Age-structured impact of social distancing on the COVID-19 epidemic in India, arXiv preprint arXiv:2003.12055.
  • E. Shim, A. Tariq, W. Choi, Y. Lee, G. Chowell, Transmission potential and severity of COVID-19 in South Korea, International Journal of Infectious Diseases.
  • G. D. Barmparis, G. Tsironis, Estimating the infection horizon of COVID-19 in eight countries with a data-driven approach, Chaos, Solitons & Fractals (2020) 109842.
  • D. Fanelli, F. Piazza, Analysis and forecast of COVID-19 spreading in China, Italy and France, Chaos, Solitons & Fractals 134 (2020) 109761.
  • K. Biswas, A. Khaleque, P. Sen, Covid-19 spread: Reproduction of data and prediction using a SIR model on Euclidean network, arXiv preprint arXiv:2003.07063.
  • D. Ray, M. Salvatore, R. Bhattacharyya, L. Wang, S. Mohammed, S. Purkayastha, A. Halder, A. Rix, D. Barker, M. Kleinsasser, et al., Predictions, role of interventions and effects of a historic national lockdown in India’s response to the COVID-19 pandemic: data science call to arms, medRxiv.
  • S. Mandal, T. Bhatnagar, N. Arinaminpathy, A. Agarwal, A. Chowdhury, M. Murhekar, R. R. Gangakhedkar, S. Sarkar, et al., Prudent public health intervention strategies to control the coronavirus disease 2019 transmission in India: A mathematical model-based approach, Indian Journal of Medical Research 151 (2) (2020) 190.
  • K. Prem, Y. Liu, T. W. Russell, A. J. Kucharski, R. M. Eggo, N. Davies, S. Flasche, S. Clifford, C. A. Pearson, J. D. Munday, et al., The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling study, The Lancet Public Health.
  • A. J. Kucharski, T. W. Russell, C. Diamond, Y. Liu, J. Edmunds, S. Funk, R. M. Eggo, F. Sun, M. Jit, J. D. Munday, et al., Early dynamics of transmission and control of COVID-19: a mathematical modelling study, The lancet infectious diseases .
  • Z. Yang, Z. Zeng, K. Wang, S.-S. Wong, W. Liang, M. Zanin, P. Liu, X. Cao, Z. Gao, Z. Mai, et al., Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions, Journal of Thoracic Disease 12 (3) (2020) 165.
  • Y. Li, B. Wang, R. Peng, C. Zhou, L. Zhan, Chen, X. Zhuoxun, Jiang, B. Zhao, Mathematical Modeling and Epidemic Prediction of COVID-19 and Its Significance to Epidemic Prevention and Control Measures, Annals of Infectious Disease and Epidemiology 5 (1) (2020) 19.
  • Z. Tang, X. Li, H. Li, Prediction of New Coronavirus Infection Based on a Modified SEIR Model, medRxiv.
  • X. Zhou, X. Ma, N. Hong, L. Su, Y. Ma, J. He, H. Jiang, C. Liu, G. Shan, W. Zhu, et al., Forecasting the worldwide spread of COVID-19 based on logistic model and SEIR model, medRxiv.
  • C. Zhan, K. T. Chi, Y. Fu, Z. Lai, H. Zhang, Modeling and prediction of the 2019 coronavirus disease spreading in China incorporating human migration data, medRxiv.
  • Q. Lin, S. Zhao, D. Gao, Y. Lou, S. Yang, S. S. Musa, M. H. Wang, Y. Cai, W. Wang, L. Yang, et al., A conceptual model for the outbreak of Coronavirus disease 2019 (COVID-19) inWuhan, China with individual reaction and governmental action, International journal of infectious diseases.
  • G. Giordano, F. Blanchini, R. Bruno, P. Colaneri, A. Di Filippo, A. Di Matteo, M. Colaneri, Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy, Nature Medicine (2020) 1–6.
  • C. Hamzaçebi, Improving artificial neural networks’ performance in seasonal time series forecasting, Information Sciences 178 (23) (2008) 4550–4559.
  • T. Chakraborty, I. Ghosh, Real-time forecasts and risk assessment of novel coronavirus (COVID-19) cases: A data-driven analysis, Chaos, Solitons & Fractals 135 (2020) 109850.
  • D. Benvenuto, M. Giovanetti, L. Vassallo, S. Angeletti, M. Ciccozzi, Application of the ARIMA model on the COVID-2019 epidemic dataset, Data in brief (2020) 105340.
  • C. Y. Shen, A logistic growth model for COVID-19 proliferation: experiences from China and international implications in infectious diseases, International Journal of Infectious Diseases.
  • X. Zhang, R. Ma, L. Wang, Predicting turning point, duration and attack rate of COVID-19 outbreaks in major Western countries, Chaos, Solitons & Fractals (2020) 109829.
  • J. Yuan, M. Li, G. Lv, Z. K. Lu, Monitoring transmissibility and mortality of COVID-19 in Europe, International Journal of Infectious Diseases.
  • N. Haider, A. Yavlinsky, D. Simons, A. Y. Osman, F. Ntoumi, A. Zumla, R. Kock, Passengers’ destinations from China: low risk of novel coronavirus (2019-nCoV) transmission into Africa and South America, Epidemiology & Infection 148.
  • M. M. Islam, M. M. Islam, M. J. Hossain, F. Ahmed, Modeling risk of infectious diseases: a case of Coronavirus outbreak in four countries, medRxiv.
  • F. Ndairou, I. Area, J. J. Nieto, D. F. Torres, Mathematical modeling of covid-19 transmission dynamics with a case study of wuhan, Chaos, Solitons & Fractals (2020) 109846.
  • S. Bekiros, D. Kouloumpou, SBDiEM: A new Mathematical model of Infectious Disease Dynamics, Chaos, Solitons & Fractals (2020) 109828.
  • K. Biswas, P. Sen, Space-time dependence of corona virus (COVID-19) outbreak, arXiv preprint arXiv:2003.03149.
  • K. Karako, P. Song, Y. Chen, W. Tang, Analysis of COVID-19 infection spread in Japan based on stochastic transition model, Bioscience trends.
  • B. Tang, X. Wang, Q. Li, N. L. Bragazzi, S. Tang, Y. Xiao, J. Wu, Estimation of the transmission risk of the 2019-nCoV and its implication for public health interventions, Journal of clinical medicine 9 (2) (2020) 462.
  • C. Anastassopoulou, L. Russo, A. Tsakris, C. Siettos, Data-based analysis, modelling and forecasting of the COVID-19 outbreak, PloS one 15 (3) (2020) e0230405.
  • L. Kriston, Projection of cumulative coronavirus disease 2019 (COVID-19) case growth with a hierarchical logistic model, BullWorld Health Organ COVID-19 Open Preprints. http://doi.org/10.2471/BLT20.
  • J. T. Wu, K. Leung, G. M. Leung, Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study, The Lancet 395 (10225) (2020) 689–697.
  • J. Wangping, H. Ke, S. Yang, C. Wenzhe, W. Shengshu, Y. Shanshan, W. Jianwei, K. Fuyin, T. Penggang, L. Jing, et al., Extended SIR prediction of the epidemics trend of COVID-19 in Italy and compared with Hunan, China, Frontiers in Medicine 7 (2020) 169.
  • B. Ivorra, M. R. Ferŕandez, M. Vela-Ṕerez, A. Ramos, Mathematical modeling of the spread of the coronavirus disease 2019 (COVID-19) taking into account the undetected infections. The case of China, Communications in Nonlinear Science and Numerical Simulation (2020) 105303.
  • Y. Huang, L. Yang, H. Dai, F. Tian, K. Chen, Epidemic situation and forecasting of COVID-19 in and outside China, Bull World Health Organ 10.
  • L. Mulder, Use of simulated annealing to determine the operational parameters of the SEIR model for the coronavirus for various jurisdictions, Bull World Health Organ.
  • P. Teles, A time-dependent SEIR model to analyse the evolution of the SARS-CoVid-2 epidemic outbreak in Portugal, Bull World Health Organ.
  • J. van Wees, S. Osinga, M. van der Kuip, M. Tanck, M. Hanegraaf, M. Pluymaekers, et al., Forecasting hospitalization and ICU rates of the COVID-19 outbreak: an efficient SEIR model, Bull World Health Organ.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.