14
Views
2
CrossRef citations to date
0
Altmetric
Research Article

A novel image encryption algorithm based on chaotic billiards

&
Pages 129-154 | Received 01 Sep 2018, Published online: 20 Nov 2019

References

  • Gonzalo Alvarez and Shujun Li. Some basic cryptographic requirements for chaos-based cryptosystems. International Journal of Bifurcation and Chaos, 16(08):2129–2151, (2006). doi: 10.1142/S0218127406015970
  • Christian Beck and Friedrich Schögl. Thermodynamics of chaotic systems: an introduction. Number 4. Cambridge University Press, (1995).
  • Michael V Berry. Quantizing a classically ergodic system: Sinai’s billiard and the kkr method. Annals of Physics, 131(1):163–216, (1981). doi: 10.1016/0003-4916(81)90189-5
  • Thad A Brown. Measuring chaos using the lyapunov exponent. Chaos Theory in the Social Science, pages 53–66, (1996).
  • Leonid A Bunimovich, Yakov G Sinai, and Nikolai Ivanovich Chernov. Statistical properties of two-dimensional hyperbolic billiards. Russian Mathematical Surveys, 46(4):47, (1991). doi: 10.1070/RM1991v046n04ABEH002827
  • Leonid Abramovich Bunimovich. On billiards close to dispersing. Matematicheskii Sbornik, 136(1):49–73, (1974).
  • Khalid Charif, Ahmed Drissi, and Zine El Abidine Guennoun. A pseudo random number generator based on chaotic billiards. International Journal of Network Security, 19(3):479–486, (2017).
  • Jun-xin Chen, Zhi-liang Zhu, Chong Fu, Hai Yu, and Yushu Zhang. Reusing the permutation matrix dynamically for efficient image cryptographic algorithm. Signal Processing, 111:294-307, (2015). doi: 10.1016/j.sigpro.2015.01.003
  • Tzung-Her Chen, Kai-Hsiang Tsao, and Yao-Sheng Lee. Yet another multiple-image encryption by rotating random grids. Signal Processing, 92(9):2229–2237, (2012). doi: 10.1016/j.sigpro.2012.02.015
  • NI Chernov and C Haskell. Nonuniformly hyperbolic k-systems are bernoulli. Ergodic theory and dynamical systems, 16(1):19–44, (1996). doi: 10.1017/S0143385700008695
  • Nicolai Chernov. Entropy, lyapunov exponents, and mean free path for billiards. Journal of statistical physics, 88(1-2):1–29, (1997). doi: 10.1007/BF02508462
  • Nikolai Chernov. Decay of correlations and dispersing billiards. Journal of Statistical Physics, 94(3-4):513–556, (1999). doi: 10.1023/A:1004581304939
  • Nikolai Chernov and Roberto Markarian. Chaotic billiards. Number 127. American Math ematical Soc., (2006).
  • Nikolai Chernov and Lai-Sang Young. Decay of correlations for lorentz gases and hard balls. In Hard ball systems and the Lorentz gas, pages 89–120. Springer, (2000).
  • Per Dahlqvist. The lyapunov exponent in the sinai billiard in the small scatterer limit. Nonlinearity, 10(1):159, (1997). doi: 10.1088/0951-7715/10/1/011
  • PP Deepthi, VS Nithin, and PS Sathidevi. Implementation and analysis of stream ciphers based on the elliptic curves. Computers & Electrical Engineering, 35(2):300-314, (2009). doi: 10.1016/j.compeleceng.2008.06.006
  • JP Eckmann. J.-p. eckmann and d. ruelle, rev. mod. phys. 57, 617 (1985). Rev. Mod. Phys., 57:617, (1985).
  • Jiri Fridrich. Symmetric ciphers based on two-dimensional chaotic maps. International Journal of Bifurcation and chaos, 8(06):1259-1284, (1998). doi: 10.1142/S021812749800098X
  • B Friedman, Y Oono, and I Kubo. Universal behavior of sinai billiard systems in the small-scatterer limit. Physical review letters, 52(9):709, (1984). doi: 10.1103/PhysRevLett.52.709
  • Chong Fu, Jun-jie Chen, Hao Zou, Wei-hong Meng, Yong-feng Zhan, and Ya-wen Yu. A chaos-based digital image encryption scheme with an improved diffusion strategy. Optics Express, 20(3):2363–2378, (2012). doi: 10.1364/OE.20.002363
  • Giovanni Gallavotti and Donald S Ornstein. Billiards and bernoulli schemes. Communications in Mathematical Physics, 38(2):83-101, (1974). doi: 10.1007/BF01651505
  • Xiaoling Huang. Image encryption algorithm using chaotic chebyshev generator. Nonlinear Dynamics, 67(4):2411–2417, (2012). doi: 10.1007/s11071-011-0155-7
  • Madhusudan Joshi, Chandra Shakher, and Kehar Singh. Image encryption and decryption using fractional fourier transform and radial hilbert transform. Optics and Lasers in Engineering, 46(7):522–526, (2008). doi: 10.1016/j.optlaseng.2008.03.001
  • Ljupco Kocarev, Goce Jakimoski, Toni Stojanovski, and Ulrich Parlitz. From chaotic maps to encryption schemes. In Circuits and Systems, 1998. ISCAS’98. Proceedings of the 1998 IEEE International Symposium on, volume 4, pages 514-517. IEEE, (1998).
  • Shujun Li, Qi Li, Wenmin Li, Xuanqin Mou, and Yuanlong Cai. Statistical properties of digital piecewise linear chaotic maps and their roles in cryptography and pseudo-random coding. In IMA International Conference on Cryptography and Coding, pages 205–221. Springer, (2001). doi: 10.1007/3-540-45325-3_19
  • Hongjun Liu and Xingyuan Wang. Color image encryption using spatial bit-level permutation and high-dimension chaotic system. Optics Communications, 284(16-17):3895–3903, (2011). doi: 10.1016/j.optcom.2011.04.001
  • Dhiraj Pandey, Uma Shankar Rawat, and Anil Kumar. Robust progressive block based visual cryptography with chaotic map. Journal of Discrete Mathematical Sciences and Cryptography, 19(5-6):1025–1040, (2016). doi: 10.1080/09720529.2015.1132040
  • Claude E Shannon. Communication theory of secrecy systems. Bell system technical journal, 28(4):656–715, (1949). doi: 10.1002/j.1538-7305.1949.tb00928.x
  • Monisha Sharma, MK Kowar, and Manisha Sharma. An improved evolutionary algorithm for secured image using adaptive genetic algorithm. Journal of Discrete Mathematical Sciences and Cryptography, 11(6):673-683, (2008). doi: 10.1080/09720529.2008.10698397
  • Yakov Grigor’evich Sinai. Dynamical systems with elastic reflections. Russian Mathematical Surveys, 25(2):137–189, (1970). doi: 10.1070/RM1970v025n02ABEH003794
  • Xingyuan Wang, Lintao Liu, and Yingqian Zhang. A novel chaotic block image encryption algorithm based on dynamic random growth technique. Optics and Lasers in Engineering, 66:10–18, (2015). doi: 10.1016/j.optlaseng.2014.08.005
  • Yue Wu, Yicong Zhou, Sos Agaian, and Joseph P Noonan. A symmetric image cipher using wave perturbations. Signal Processing, 102:122– 131, (2014). doi: 10.1016/j.sigpro.2014.03.015
  • Yue Wu, Yicong Zhou, Joseph P Noonan, and Sos Agaian. Design of image cipher using latin squares. Information Sciences, 264:317–339, (2014). doi: 10.1016/j.ins.2013.11.027
  • Guozhen Xiao, Mingxin Lu, Lei Qin, and Xuejia Lai. New field of cryptography: Dna cryptography. Chinese Science Bulletin, 51(12):1413– 1420, (2006). doi: 10.1360/csb2006-51-12-1413
  • Lai-Sang Young. Statistical properties of dynamical systems with some hyperbolicity. Annals of Mathematics, 147(3):585–650, (1998). doi: 10.2307/120960
  • Xianlin Zhou and Jun Ye. A new way to produce key streams based on chaotic sequences. Journal of Discrete Mathematical Sciences and Cryptography, 21(5):1097–1105, (2018). doi: 10.1080/09720529.2017.1402577
  • Zhi-liang Zhu, Wei Zhang, Kwok-wo Wong, and Hai Yu. A chaosbased symmetric image encryption scheme using a bit-level permutation. Information Sciences, 181(6):1171-1186, (2011). doi: 10.1016/j.ins.2010.11.009

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.