93
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Antibacterial Activity and Action Mechanism of the Echinops ritro L. Essential Oil Against Foodborne Pathogenic Bacteria

, , , , , , , , , , , & show all
Pages 1172-1183 | Received 23 Aug 2017, Accepted 25 Oct 2017, Published online: 20 Dec 2017

References

  • Tian, J., Zeng, X., Feng, Z., Miao, X., Peng, X., Wang, Y. (2014). Zanthoxylum molle Rehd. essential oil as a potential natural preservative in management of Aspergillus flavus. Industrial Crops & Products. 60(1): 151–159.
  • Moreira, M.R., Ponce, A.G., Cedel, V., Roura, S.I. (2005). Inhibitory parameters of essential oils to reduce a foodborne pathogen. LWT - Food Science and Technology. 38(5): 565–570. doi: 10.1016/j.lwt.2004.07.012
  • Fleming-Jones, M.E., Smith, R.E. (2004). Volatile organic compounds in foods: a five year study. Journal of Agricultural & Food Chemistry. 51(27): 8120–7. doi: 10.1021/jf0303159
  • Chorianopoulos, N., Kalpoutzakis, E., Aligiannis, N., Mitaku, S., Nychas, G.J., Haroutounian S. A. (2004). Essential oils of Satureja, Origanum, and Thymus species: chemical composition and antibacterial activities against foodborne pathogens. Journal of Agricultural & Food Chemistry. 52(26): 8261–67. doi: 10.1021/jf049113i
  • Nikolic, N., Vasic, S.J.Ð., Stefanovic, O.Lj.È., Nikolic, N.J.Ð. (2014). Antibacterial and anti-biofilm activity of ginger (Zingiber officinale (Roscoe)) ethanolic extract. Kragujevac J. Sci. 36: 129–136. doi: 10.5937/KgJSci1436129N
  • Frank, J.F. (2001). Microbial attachment to food and food contact surfaces. Advances in Food & Nutrition Research. 43: 319–70. doi: 10.1016/S1043-4526(01)43008-7
  • Al-Shuneigat, J., Al-Saraireh, Y., Al-Tarawneh, I., Al-Sarayreh, S., Al-Qudah, M. (2014). Effects of wild Thymus vulgaris essential oil on clinical isolates biofilm-forming bacteria. Iosr Journal of Dental & Medical Sciences. 13(9): 62–66. doi: 10.9790/0853-13936266
  • Houdt, R.V., Michiels, C.W. (2010). Biofilm formation and the food industry, a focus on the bacterial outer surface. Journal of Applied Microbiology. 109(4): 1117–1131. doi: 10.1111/j.1365-2672.2010.04756.x
  • De, l.F.C., Mertens, J., Smit, J., Hancock, R.E. (2012). The bacterial surface layer provides protection against antimicrobial peptides. Applied & Environmental Microbiology. 78(15): 5452–6. doi: 10.1128/AEM.01493-12
  • Mah, T.F., O’Toole, G.A. (2001). Mechanisms of biofilm resistance to antimicrobial agents. Trends in Microbiology. 9(1): 34–9. doi: 10.1016/S0966-842X(00)01913-2
  • Steenackers, H., Hermans, K., Vanderleyden, J., Keersmaecker, S.C.J.D. (2012). Salmonella biofilms: An overview on occurrence, structure, regulation and eradication. Food Research International. 45(2): 502–31. doi: 10.1016/j.foodres.2011.01.038
  • Fisher, K., Phillips, C. (2008). Potential antimicrobial uses of essential oils in food: is citrus the answer? Trends in Food Science & Technology. 19(3): 156–164. doi: 10.1016/j.tifs.2007.11.006
  • Vargas, A.C.D., Loguercio, A.P., Witt, N.M., Costa, M.M.D., Silva, M.S.E., Viana, L.R. (2015). Atividade antimicrobiana 0, in vitro1, de extrato alcóolico de própolis. Ciência Rural.
  • SOUZA, Maria, J. (2000). Atividade antimicrobiana de Tagetes minuta L. - Compositae (Chinchilho) frente a bactérias Gram-positivas e Gram-negativas. Brazilian Journal of Veterinary Research & Animal Science. 37(6): 0–0.
  • Cowan, M.M. (1999). Plant products as antimicrobial agents. Clinical Microbiology Reviews. 12(4): 564–582.
  • Coelho, L.C.B.B. (2010). Antimicrobial activity of secondary metabolites and lectins from plants. 396–406.
  • Klancnik, A., Guzej, B., Kolar, M.H., Abramovic, H., Mozina, S.S. (2009). In vitro antimicrobial and antioxidant activity of commercial rosemary extract formulations. Journal of Food Protection. 72(8): 1744–52. doi: 10.4315/0362-028X-72.8.1744
  • Alizadeh, A. (2016). Essential oil composition, phenolic content, antioxidant, and antimicrobial activity of cultivated Satureja rechingeri Jamzad at different phenological stages. Zeitschrift für Naturforschung C. 70(3–4): 51–58.
  • Friedman, M., Henika, P.R., Mandrell, R.E. (2002). Bactericidal Activities of Plant Essential Oils and Some of Their Isolated Constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. Journal of Food Protection. 65(10): 1545–60. doi: 10.4315/0362-028X-65.10.1545
  • Soliman, K.M., Badeaa, R.I. (2002). Effect of oil extracted from some medicinal plants on different mycotoxigenic fungi. Food & Chemical Toxicology. 40(11): 1669–1675. doi: 10.1016/S0278-6915(02)00120-5
  • Alsereiti, M.R., Abuamer, K.M., Sen, P. (1999). Pharmacology of rosemary (Rosmarinus officinalis Linn.) and its therapeutic potentials. Indian Journal of Experimental Biology. 37(13): 124–30.
  • Abebe, D., Ayehu, A. (1993). Medicinal plants and enigmatic health practices of northern Ethiopia.
  • Tadesse, M., Abegaz, B. (1990). A revision of the genus Echinops (Compositae, Cardueae) in Ethiopia, with notes on phytogeography and chemistry. Mitteilungen Aus Dem Institut Für Allgemeine Botanik Hamburg. 23b: 605–629.
  • Weyerstahl, P., Marschall, H., Seelmann, I., Jakupovic, J. (1998). ChemInform Abstract: Cameroonane, Prenopsane and Nopsane, Three New Tricyclic Sesquiterpene Skeletons. European 1. Journal of Organic Chemistry. (6): 1205–1212. doi: 10.1002/(SICI)1099-0690(199806)1998:6<1205::AID-EJOC1205>3.0.CO;2-K
  • Menut, C., Lamaty, G., Weyerstahl, P., Marschall, H., Seelmann, I., Zollo, P.H.A. (1997). Aromatic plants of tropical Central Africa. Part XXXI. Tricyclic sesquiterpenes from the root essential oil of Echinops giganteus var. lelyi C. D. Adams. Flavour & Fragrance Journal. 12(6): 415–421. doi: 10.1002/(SICI)1099-1026(199711/12)12:6<415::AID-FFJ666>3.0.CO;2-T
  • Hymete, A., Kidane, A. (1991). Screening for anthelmintic activity in two Echinops spp. Ethiop. The Pharmaceutical Journal. 9(1): 67–71.
  • Guo, D., Lou, Z., Liu, Z. (1994). Chemical Components of Volatile Oil from Echinops grijisii Hance. China Journal of Chinese Materia Medica. 19(2): 100–1, 127.
  • W, D., G., F. (1969). [Echinine, a dihydroquinoline-alkaloid from seeds of Echinops ritro L]. Pharmazie. 24(12): 782.
  • Adams, R. (2007). Identification of essential oil compounds by gas chromatography/mass spectrometry.
  • Silva, F., Ferreira, S., Queiroz, J.A., Domingues, F.C. (2011). Coriander (Coriandrum sativum L.) essential oil: its antibacterial activity and mode of action evaluated by flow cytometry. Journal of Medical Microbiology. 60(10): 1479–86. doi: 10.1099/jmm.0.034157-0
  • Pettit, R.K., Weber, C.A., Kean, M.J., Hoffmann, H., Pettit, G.R., Tan, R., Franks, K.S., Horton, M.L. (2005). Microplate Alamar blue assay for Staphylococcus epidermidis biofilm susceptibility testing. Antimicrobial Agents & Chemotherapy. 49(7): 2612–7. doi: 10.1128/AAC.49.7.2612-2617.2005
  • Sandasi, M., Leonard, C.M., Viljoen, A.M. (2010). The in vitro antibiofilm activity of selected culinary herbs and medicinal plants against Listeria monocytogenes. Letters in Applied Microbiology. 50(1): 30–5. doi: 10.1111/j.1472-765X.2009.02747.x
  • Laemmli, U.K. (1970). Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature. 227(5259): 680–685. doi: 10.1038/227680a0
  • Bajpai, V.K., Sharma, A., Baek, K.H. (2013). Antibacterial mode of action of Cudrania tricuspidata fruit essential oil, affecting membrane permeability and surface characteristics of foodborne pathogens. Food Control. 32(2): 582–590. doi: 10.1016/j.foodcont.2013.01.032
  • Mansilla, A.Y., Albertengo, L., Rodríguez, M.S., Debbaudt, A., Zúñiga, A., Casalongué, C.A. (2013). Evidence on antimicrobial properties and mode of action of a chitosan obtained from crustacean exoskeletons on Pseudomonas syringae pv. tomato DC3000. Applied Microbiology and Biotechnology. 97(15): 6957–66. doi: 10.1007/s00253-013-4993-8
  • Dorman, H.J. (2000). Antimicrobial agents from plants: antibacterial activity of plant volatile oils. Journal of Applied Microbiology. 88(2): 308–316. doi: 10.1046/j.1365-2672.2000.00969.x
  • Van Vuuren, S.F., (2008). Antimicrobial activity of South African medicinal plants. J. Ethnopharmacol. 119(3): 462–72. doi: 10.1016/j.jep.2008.05.038
  • Kotan, R., Kordali, S., Cakir, A. (2007). Screening of antibacterial activities of twenty-one oxygenated monoterpenes. Zeitschrift Fur Naturforschung C A Journal of Biosciences. 62(8): 507–513.
  • Delaquis, P.J., Stanich, K. (2004). Antilisterial properties of cilantro essential oil. J. Essent. Oil Res. 16(5): 409–414. doi: 10.1080/10412905.2004.9698757
  • Lis-Balchin, M., Deans, S.G. (1997). Bioactivity of selected plant essential oils against Listeria monocytogenes. Journal of Applied Microbiology. 82(6): 759–762. doi: 10.1046/j.1365-2672.1997.00153.x
  • Mourey, A., Canillac, N. (2002). Anti-Listeria monocytogenes activity of essential oils components of conifers. Food Control. 13(4–5): 289–292. doi: 10.1016/S0956-7135(02)00026-9
  • Hsouna, A.B., Trigui, M., Mansour, R.B., Jarraya, R.M., Damak, M., Jaoua, S. (2011). Chemical composition, cytotoxicity effect and antimicrobial activity of Ceratonia siliqua essential oil with preservative effects against Listeria inoculated in minced beef meat. International Journal of Food Microbiology. 148(1): 66–72. doi: 10.1016/j.ijfoodmicro.2011.04.028
  • Salton, M.R. (1953). Studies of the bacterial cell wall. IV. The composition of the cell walls of some Gram-positive and Gram-negative bacteria. Biochimica Et Biophysica Acta. 10(4): 512–523.
  • Sikkema, J., Bont, J.A.D., Poolman. (1995). Mechanisms of membrane toxicity of hydrocarbons. Microbiological Reviews. 59(2): 201–22.
  • Melchior, M.B., Vaarkamp, H., Fink-Gremmels, J. (2006). Biofilms: A role in recurrent mastitis infections? Veterinary Journal. 171(3): 398–407. doi: 10.1016/j.tvjl.2005.01.006
  • Costerton, J.W., Stewart, P.S., Greenberg, E.P. (1999). Bacterial biofilms: a common cause of persistent infections. Science. 284(5418): 1318. doi: 10.1126/science.284.5418.1318
  • Lewis, K. (2001). Riddle of biofilm resistance. Antimicrobial Agents & Chemotherapy. 45(4): 999–1007. doi: 10.1128/AAC.45.4.999-1007.2001
  • Kohanski, M.A., Dwyer, D.J., Collins, J.J. (2010). How antibiotics kill bacteria: from targets to networks. Nature Reviews Microbiology. 8(6): 423–35. doi: 10.1038/nrmicro2333
  • Bajpai, V.K., Al-Reza, S.M., Choi, U.K., Lee, J.H., Kang, S.C. (2009). Chemical composition, antibacterial and antioxidant activities of leaf essential oil and extracts of Metasequioa glyptostroboides Miki ex Hu. Food & Chemical Toxicology. 47(8): 1876–1883. doi: 10.1016/j.fct.2009.04.043
  • Shin, S.Y., Bajpai, V.K., Kim, H.R., Sun, C.K. (2007). Antibacterial activity of bioconverted eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) against foodborne pathogenic bacteria. International Journal of Food Microbiology. 113(2): 233–236. doi: 10.1016/j.ijfoodmicro.2006.05.020
  • Gao, C., Tian, C., Lu, Y., Xu, J., Luo, J., Guo, X. (2011). Essential oil composition and antimicrobial activity of Sphallerocarpus gracilis seeds against selected food-related bacteria. Food Control. 22(3–4): 517–522. doi: 10.1016/j.foodcont.2010.09.038

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.