62
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Volatile Secondary Metabolites in Cascarillo (Ocotea caparrapi (Sandino-Groot ex Nates) Dugand - Lauraceae)

&
Pages 374-387 | Received 15 Mar 2017, Accepted 21 Dec 2017, Published online: 09 May 2018

References

  • Van der Werff, H. (2002). A synopsis of Ocotea (Lauraceae) in central america and southern mexico. Ann. Missouri Bot. Gard. 89: 429–451.
  • Chaverri, C. and Cicci, J.F. (2005). Essential oil of trees of the genus Ocotea (Lauraceae) in Costa Rica. I. Ocotea brenesii. Rev. Biol. Trop. 53: 431–436.
  • Coutinho, D.F., Dias, C.S., Barbosa-Filho, J.M., Agra, M.F., Martins, R.M., Silva, T.M.S., da-Cunha, E.V.L., Silva, M.S. and Craveiro, A.A. (2007). Composition and molluscicidal activity of the essential oil from the stem bark of Ocotea bracteosa (Meisn.) Mez. J. Essent. Oil Res. 19: 482–484.
  • Lorenzo, D., Loayza, I., Leigue, L., Frizzo, C., Dellacassa, E. and Moyna, P. (2001). Asaricin, the main component of Ocotea opifera Mart. Essential oil. Nat. Prod. Lett. 15: 163–­170.
  • De Lima, K.K., Moreira, J., Silva, E. and da Veiga-Junior, V. (2013). Chemical composition and platelet aggregation activity of essential oils of two species of the genus Ocotea (Lauraceae). J. Essent. Oil Bearing Plants. 16: 518–523.
  • Brooks, C.J.W. and Campbell, M.M. (1969). Caparrapi oxide, a sesquiterpene from caparrapi oil. Phytochemistry. 8: 215–218.
  • Sacchetti, G., Guerrini, A., Noriega, P., Bianchi, A. and Bruni, R. (2006). Essential oil of wild Ocotea quixos (Lam.) Kosterm. (Lauraceae) leaves from Amazonian Ecuador. Flavour Fragr. J. 21: 674–676.
  • Ballabeni, V., Tognolini, M., Giorgio, C., Bertoni, S., Bruni, R. and Barocelli, E. (2010). Ocotea quixos Lam. essential oil: In vitro and in vivo investigation on its anti-inuammatory properties. Fitoterapia. 81: 289–295.
  • Guerrini, A., Moreno, G., Sacchetti, G., Muzzoli, M., Medici, A., Besco, E. and Bruni, R. (2006). Composition of the volatile fraction of Ocotea bofo Kunth (Lauraceae) calyces by GC-MS and NMR fingerprinting and its antimicrobial and antioxidant activity. J. Agric. Food Chem. 54: 7778–7788.
  • Chaverri, C. and Cicció, J.F. (2007). Essential oils from Ocotea austinii C. K. Allen (Lauraceae) from Costa Rica. J. Essent. Oil Res. 19: 439–443.
  • De Luca, A.N., Batista, J.M., López, S.N., Furlan, M., Cavalheiro, A.J., Siqueira, D.H., da Silva, V., Massayoshi, S. and Yoshida, M. (2010). Aromatic compounds from three brazilian Lauraceae species. Quim Nova. 33: 321–323.
  • De Camargo, M.J., Dantas, M.L., Miyuki, C., Delphino, E., Rodrigues, F. and Silva W. (2013). Sesquiterpenos de Ocotea lancifolia (Lauraceae). Quim Nova. 36: 1008–1013.
  • Bruni, R., Medici, A., Andreotti, E., Fantin, C., Muzzoli, M., Dehesa, M., Romagnoli, C. and Sacchetti, G. (2004). Chemical composition and biological activities of Ishpingo essential oil, a traditional Ecuadorian spice from Ocotea quixos (Lam.) Kosterm. (Lauraceae) flower calices. Food Chem. 85: 415–421.
  • Ballabeni, V., Tognolini, M., Bertoni, S., Bruni, R., Guerrini, A., Moreno, G. and Barocelli, E. (2007). Antiplatelet and antithrombotic activities of essential oil from wild Ocotea quixos (Lam.) Kosterm. (Lauraceae) calices from Amazonian Ecuador. Pharmacol. Res. 55: 23–30.
  • Zschocke, S., Drewes, S.E., Paulus, K., Bauer, R. and van Staden, J. (2000). Analytical and pharmacological investigation of Ocotea bullata (black stinkwood) bark and leaves. J. Ethnopharmacol. 71: 219–230.
  • Figueiredo, A.C., Barroso, J.G., Pedro, L.G. and Scheffer, J.J.C. (2008). Factors affecting secondary metabolite production in plants: volatile components and essential oils. Flavour Fragr. J. 23: 213–226.
  • Nino, J., Correa, Y.M. and Mosquera, O.M. (2011). In vitro evaluation of Colombian plant extracts against Black Sigatoka (Mycosphaerella fijiensis Morelet). Arch. Phytopathol. Pfl. 44: 791–803.
  • Vermeulen, W.J., Geldenhuys, C.J. and Esler, K.J. (2012). Response of Ocotea bullata, Curtisia dentata and Rapanea melanophloeos to medicinal bark stripping in the southern Cape, South Africa: implications for sustainable use. South Forests. 74: 183–193.
  • Leporatti, M.L., Pintore, G., Foddai, M., Chessa, M., Piana, A., Petretto, G.L., Masia, M.D., Mangano, G. and Nicoletti, M. (2013). Chemical, biological, morphoanatomical and antimicrobial study of Ocoteapuchury-major Mart. Nat. Prod. Res: Formerly Natural Product Letters. 28: 294–300.
  • Borges, J., Brooks, C.J.W. and Campbell, M.M. (1966). Caparrapidiol and caparrapitriol. Tetrahedron Lett. 31: 3731–3736.
  • Ohloff, G. (1978). Recent development in the field of naturally-occurring aroma components In: Fortschritte der Chemie Organischer Naturstoffe/Progress in the Chemistry of Organic Natural Products. Gerz, W., Grisebach, H. and Kirby, G.W. (eds.) Springer-Verlag, Vienna; Volume 35, pp. 431–527.
  • Palomino, E., Maldonado, C., Kempff, M.B. and Ksebati, M.B. (1996). Caparratriene, an active sesquiterpene hydrocarbon from Ocotea caparrapi. J. Nat. Prod. 59: 77–79.
  • Coy-Barrera, E.D., Cuca-Suarez, L.E., and Sefkow, M. (2009). PAF-antagonistic bicyclo [3.2.1] octanoid neolignans from leaves of Ocotea macrophylla Kunth. (Lauraceae). Phyto­chemistry. 70: 1309–1314.
  • Prieto, J.A., Pabón, L.C., Patino, O.J., Delgado, W.A. and Cuca, L.E. (2010). Chemical constituents, insecticide and antifungal activities of the essential oils of leaves of two Colombian species of ocotea genus (lauraceae). Rev. Colomb. Quim. 39(2): 199–209.
  • Delgado, W.A., Cuca, L.E. and Caroprese, J.F. (2016). Chemical composition of essential oil of Ocotea cymbarum Kunth (cascarilla and/or sassafras) from the Orinoquia region. Rev. Cubana Plant Med. 21(3): 248–260.
  • Godefroot, M., Sandra, P. and Verzele, M. (1981). New method for quantitative essential oil analysis. J. Chromatogr. A. 203: 325–335.
  • Joulian, D. and Konig, W.A. (1998). The atlas of spectral data of sesquiterpenes hydrocarbons. E.B.-Verlag, Hamburg, pp.
  • Adams, R.P. (2007). Identification of essential oil components by gas chromatography/mass spectrometry. Allured Publishing Co. Carol Stream, Illinois.
  • Online Archive of National Institute of Standards and Technology [Available from: http://webbook.nist.gov/chemistry]. (2015). Department of Commerce. U.S.
  • Gonzalez, O. (1979). Extracción y caracterización de algunos componentes presentes en los aceites de la madera de Ocotea caparrapi [dissertation]. Universidad Nacional de Colombia. Bogota, (CO).
  • Uyanik, M., Ishihara, K. and Yamamoto, H. (2005). Biomimetic synthesis of acid-sensitive (-) and (+)-caparrapi oxides, (-) and (+)-8-epicaparrapi oxides, and (+)-dysifragin induced by artificial cyclases. Bioorgan. Med. Chem. 13: 5055–5065.
  • Bakkali, F., Averbeck, S., Averbeck, D. and Idaomar, M. (2008). Biological euects of essential oils - A review. Food Chem. Toxicol. 46: 446–475.
  • Vieira, R.F., Bizzo, H.R. and Deschamps C. (2010). Genetic resources of aromatic plants from Brazil. Isr. J. Plant Sci. 58: 263–271.
  • Castro, R.D. and Lima, E.O. (2011). Atividade antifúngica dos óleos essenciais de sassafras (Ocotea odorifera Vell.) e alecrim (Rosmarinus officinalis L.) sobre o genero Candida. Rev. Bras Pl. Med. Botucatu. 13: 203–208.
  • De Diaz, A.M.P., Gottlieb, H.E. and Gottlieb, O. (1980). Dehydrodieugenols from Ocotea cymbarum. Phytochemistry. 19: 681–682.
  • Andrei, C.C., Braz-Filho, R. and Gottlieb, O.R. (1988). Allylphenols from Ocotea cymbarum. Phytochemistry. 27: 3992–3993.
  • Tognolini, M., Barocelli, E., Ballabeni, V., Bruni, R., Bianchi, A., Chiavarini, M., Impicciatore, M. (2006). Comparative screening of plant essential oils: Phenylpropanoid moiety as basic core for antiplatelet activity. Life Sci. 78: 1419–1432.
  • Perez, S., Zavala, M., Arias, L. and Ramos, M. (2011). Anti-inflammatory activity of some essential oils. J. Essent. Oil Res. 23: 38–44.
  • Hashimoto, K., Yanagisawa, T., Okui, Y., Ikeya, Y., Maruno, M. and Fujita, T. (1994). Studies on anti-allergic components in the roots of Asiasarum sieboldi. Planta Med. 60: 124–127.
  • Brophy, J.J., Goldsack, R.J., Hook, J.M., Fookes, C.J.R., Forster, PI. (2004). The leaf essential oils of the australian species of Pseuduvaria (Annonaceae). J. Essent. Oil Res. 16: 362–366.
  • Nabiha, B., Abdelfateh, E.O., Faten, K., Paul, W.J., Michel, M. and Moncef, C.M. (2009). Chemical composition and antioxidant activity of Laurus nobilis floral buds essential oil. J. Essent. Oil Bearing Plants. 12: 694–702.
  • Zawislak, G. and Dzida, K. (2012). Composition of essential oils and content of macronutrients in herbage of tarragon (Artemisia dracunculus l.) grown in south-eastern poland. J. Elem. 17: 721–729.
  • Thai, T.H., Bazzali, O., Hoi, T.M., Tuan, N.A., Tomi, F., Casanova, J. and Bighelli, A. (2013). Chemical composition of the essential oils from two vietnamese Asarum species: A. glabrum and A. cordifolium. Nat. Prod. Commun. 8: 235–238.
  • Munoz-Acevedo, A., Puerto, C.E., Rodriguez, J.D., Aristizábal-Córdoba, S. and Kouzne-tsov, V. (2014). Estudio quimico-biológico de los aceites esenciales de Croton malambo H. Karst y su componente mayoritario, metileugenol. Bol. Latinoam Caribe. 13: 336–343.
  • Palmeira, S.F., Conserva, L.M., Andrade, E.H.D. and Guilhon, G.M.S.P. (2001). Analysis by GC-MS of the hexane extract of the aerial parts of Aristolochia acutifolia Duchtr. Flavour Frag. J. 16: 85–88.
  • Grosso, C., Teixeira, G., Gomes, I., Martins, E.S., Barroso, J.G., Pedro, L.G. and Figueir-edo, A.C. (2009). Assessment of the essential oil composition of Tornabenea annua, Tornabenea insularis and Tornabenea tenuissima fruits from Cape Verde islands. Biochem. Syst. Ecol. 37: 474–478.
  • Firuzi, O., Asadollahi, M., Gholami, M. and Javidnia, K. (2010). Composition and biological activities of essential oils from four Heracleum species. Food Chem. 122: 117–122.
  • Da Silva, J.K.R., Andrade, E.H.A., Kato, M.J., Carreira, L.M.M., Guimaraes, E.F. and Maia, J.G.S. (2011). Antioxidant capacity and larvicidal and antifungal activities of essential oils and extracts from Piper krukoffii. Nat. Prod. Commun. 6: 1361–1366.
  • Pavlovic, I., Petrovic, S., Radenkovic, M., Milenkovic, M., Couladis, M., Brankovic, S., Drobac, M.P. and Niketic M. (2012). Composition, antimicrobial, antiradical and spasmolytic activity of Ferula heuffelii Griseb. ex Heuffel (Apiaceae) essential oil. Food Chem. 130: 310–­315.
  • Opdyke, D.L.J. (1979). Methyleugenol. In: Monographs on Fragance Raw Materials. A collection of Monographs Originally Appearing in Food and Cosmetics Toxicology. Pergamon Press, UK; p. 555.
  • Gao, Y.Y. and Tseng, S. (2006). Method for treating ocular demodex. United States patent, (US). 8440240 B2.
  • Burdock, G.A. (2009). Fenaroli’s Handbook of Flavor Ingredients, Sixth Edition. CRC Press.
  • Kumar, A., Narayan, S. and Tava, A. (1997). Composition of Cymbopogon pendulus (Ness ex Steud) Wats, an elemicin-rich oil grass grown in jammu region of India. J. Essen. Oil Res. 9: 561–563.
  • Tisserand, R. and Balacs, T. (1999). Essential Oil Safety. A Guide for Health Care Professionals. Edinburgh: Churchill Livingstone.
  • De Vincenzi, M., de Vincenzi, A., Silano, M. (2004). Constituents of aromatic plants: elemicin. Fitoterapia. 75: 615–618.
  • White, J., Cook, P.J., Nkomo, J.E. and Gudz, N.G. (2007). Multi-component Insect Attractant. United States patent, (US). 20070292467 A1.
  • Flugge-Berendes, L.A., Wenzel, S.W., Cunningham, C.T., Joseph, P.R., Kruchoski, B.J. and Shannon, T.G. (2008). Skin cooling compositions. United States patent, (US). 20080085290 A1.
  • Al-Subeihi, A.A., Alhusainy, W., Paini, A., Punt, A., Vervoort, J., van Bladeren, P.J. and Rietjens, I.M. (2013). Inhibition of methyleugenol bioactivation by the herb-based constituent nevadensin and prediction of possible in vivo consequences using physiologically based kinetic modeling. Food Chem. Toxicol. 59: 564–71.
  • La Grange, M.J. (2013). Synthesis of elemicin and topical analgesic compositions. World Intellectual Property Organization, (WO). 2013133723 A1.
  • Williams, G.M., Iatropoulos, M.J., Jeffrey, A.M., Duan, J.D. (2013). Methyleugenol hepato­cellular cancer initiating effects in rat liver. Food Chem. Toxicol. 53:187–96.
  • Sipe, H.J., Jr., Lardinois, O.M. and Mason, R.P. (2014). Free radical metabolism of methyl­eugenol and related compounds. Chem. Res. Toxicol. 27: 483–489.
  • Online Archive of Human Metabolome Database. (2015). [Available from: http://www.hmdb.ca/metabolites/HMDB35873]. Canadian Institutes of Health Research. Canada.
  • Zheng, G.Q., Kenney, P.M., Zhang, J. and Lam, L.K.T. (1992). Inhibition of benzo[a]pyrene-induced tumorigenesis by myristicin, a volatile aroma constituent of parsley leaf oil. Carcinogenesis. 13: 1921–23.
  • Lee, H.S., Jeong, T.C. and Kim, J.H. (1998). In vitro and in vivo metabolism of myristicin in the rat. J. Chromatogr. B Biomed. Sci. Appl. 705: 367–372.
  • Henrich, V.C. and Weinberger, C.A. (2005). Compounds that act to modulate insect growth and methods and systems for identifying such compounds. United States patent, (US). 20050049230 A1.
  • Franke, P. and Roessling, G (2008). Medicinal composition for treating animal skin comprising a wound healing agent and a deterrent. World Intellectual Property Organization, (WO). 200808 0980 A1.
  • Semenova, M.N., Kiselyov, A.S., Tsyganov, D.V., Konyushkin, L.D., Firgang, S.I., Semenov, R.V., Malyshev, O.R., Raihstat, M.M, Fuchs, F., Stielow, A., Lantow, M., Philchenkov, A.A., Zavelevich, M.P., Zefirov, N.S., Kuznetsov, S.A. and Semenov VV. (2011). Polyalkoxybenzenes from Plants. 5. Parsley Seed Extract in Synthesis ofAzapodophyllo-toxins Featuring Strong Tubulin Destabilizing Activity in the Sea Urchin Embryo and Cell Culture Assays. J. Med. Chem. 54: 7138–7149.
  • Boulogne, I., Petit, P., Ozier-Lafontaine, H., Desfontaines, L. and Loranger-Merciris, G. (2012). Insecticidal and antifungal chemicals produced by plants: a review. Environ. Chem. Lett. 10: 325–347.
  • Lim, H.J., Woo, K.W., Lee, K.R., Lee, S.K. and Kim, H.P. (2014). Inhibition of proinflammatory cytokine generation in lung inflammation by the leaves of Perilla frutescens and its constituents. Biomol. Ther. 22: 62–67.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.