35
Views
1
CrossRef citations to date
0
Altmetric
Articles

Ameliorative Effects of Supplemental Nutrition on Growth and Essential Oil Yield of Saline Irrigated Satureja montana

, , , , ORCID Icon, & show all
Pages 1218-1227 | Received 17 Jan 2019, Accepted 16 Oct 2019, Published online: 12 Dec 2019

References

  • Silva, F.V., Martins, A., Salta, J., Neng, N.R., Nogueira, J.M., Mira, D., Gaspar, N., Justino, J., Grosso, C., Urieta, J.S. and Palavra, A.M. (2009). Phytochemical profile and anticholinesterase and antimicrobial activities of supercritical versus conventional extracts of Satureja montana. J. Agric. Food Chem. 57: 11557–11563. doi: 10.1021/jf901786p
  • Vidic, D., Maksimovic, M., Cavar, S. and Solic, M.E. (2009). Comparison of Essential Oil Profiles of Satureja montana L. and Endemic Satureja visianii Šilic. J. Essent. Oil Bearing Plants. 12: 273–281. doi: 10.1080/0972060X.2009.10643720
  • Leporatti, M.L. and Ivancheva, S. (2003). Preliminary comparative analysis of medicinal plants used in the traditional medicine of Bulgaria and Italy. J. Ethnopharmacol. 87: 123–142. doi: 10.1016/S0378-8741(03)00047-3
  • Masteliæ, J. and Jerkoviæ, I. (2003). Gas chromatography-mass spectrometry analysis of free and glycoconjugated aroma compounds of seasonally collected Satureja montana L. Food Chem. 80: 135–140. doi: 10.1016/S0308-8146(02)00346-1
  • Braga, P.C., Dal Sasso, M., Culici, M., Galastri, L., Marceca, M.T. and Guffanti, E.E. (2006). Antioxidant potential of thymol determined by chemiluminescence inhibition in human neutrophils and cell-free systems. Pharmacology 76: 61–68. doi: 10.1159/000089719
  • Carramiñana, J.J., Rota, C., Burillo, J. and Herrera, A. (2008). Antibacterial efficiency of spanish Satureja montana essential oil against Listeria monocytogenes among natural flora in minced pork. J. Food Prot. 71: 502–508. doi: 10.4315/0362-028X-71.3.502
  • Nedorostova, L., Kloucek, P., Kokoska, L., Stolcova, M. and Pulkrabek, J. (2009). Antimicrobial properties of selected essential oils in vapour phase against foodborne bacteria. Food Control. 20: 157–160. doi: 10.1016/j.foodcont.2008.03.007
  • Tepe, B. and Cilkiz, M. (2016). A pharmacological and phytochemical overview on Satureja. Pharm. Boil. 54: 375–412. doi: 10.3109/13880209.2015.1043560
  • Munns, R. and Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59: 651–681. doi: 10.1146/annurev.arplant.59.032607.092911
  • Passioura, J.B. (2007). The drought environment: physical, biological and agricultural perspectives. J. Exp. Bot. 58: 113–117. doi: 10.1093/jxb/erl212
  • Sharma, D.K. and Singh, A. (2017). The challenge to produce more food with less water: harnessing the potential of poor quality water resources. Afr. Asian J. Rural Dev. 50: 45–77.
  • Sharma, D.K. and Singh, A. (2017). Emerging Trends in Salinity Research: An Indian Perspective. In Soil Salinity Management in Agriculture. pp. 45-66. Apple Academic Press, USA.
  • Shao, H.B., Chu, L.Y., Jaleel, C.A. and Zhao, C.X. (2008). Water-deficit stress-induced anatomical changes in higher plants. C. R. Biol. 331: 215–225. doi: 10.1016/j.crvi.2008.01.002
  • Ashraf, M.P.J.C. and Harris, P.J.C. (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Sci. 166: 3–16. doi: 10.1016/j.plantsci.2003.10.024
  • Mohamed, A. and Basalah, M.O. (2015). The Active Role of Calcium Chloride on Growth and Photosynthetic Pigments of Cowpea “Vigna unguiculata L. (Walp)” Under Salinity Stress Conditions. Am-Euras. J. Agric. Environ. Sci. 15(10): 2011–2020.
  • Srivastava, A.K., Rai, A.N., Patade, V.Y. and Suprasanna, P. (2013). Calcium signaling and its significance in alleviating salt stress in plants. In Salt Stress in Plants (pp. 197-218). Springer, New York, USA.
  • Kader, M.A. and Lindberg, S. (2010). Cytosolic calcium and pH signaling in plants under salinity stress. Plant Signal Behav. 5: 233–238. doi: 10.4161/psb.5.3.10740
  • Mozafari, H.O., Kalantari, K.M., Olia’ie, M.S., Torkzadeh, M.A., Salari, H.A., Mirzaei, S.A. (2008). Role of calcium in increasing tolerance of Descurainia sophia to salt stress. J. Agric. Soc. Sci. 4: 53–58.
  • Xu, C., Li, X. and Zhang, L. (2013). The effect of calcium chloride on growth, photosynthesis, and antioxidant responses of Zoysia japonica under drought conditions. PLoS ONE. 8(7): e68214. doi: 10.1371/journal.pone.0068214
  • Bonato, C.M. and Silva, E.P. (2003). Effect of the homeopathic solution Sulphur on the growth and productivity of radish. Acta Sci. Agron. 25: 259–263. doi: 10.4025/actasciagron.v25i2.1758
  • Oliveira, M., Moura, G.M., Zardetto, G., Cardoso, B.K., Alves, A.A.R., Tsukui, A., Rezende, C.M., Cortez, L.E.R., Cortez, D.A.G., Júnior, P.R., Alberton, O. and Gazim, Z.C. (2014). Effect of sulphur on yield and chemical composition of essential oil of Ocimum basilicum L. Afr. J. Agric. Res. 9: 788–694.
  • Khan, M.I.R., Asgher, M., Iqbal, N. and Khan, N.A. (2013). Potentiality of sulfur-containing compounds in salt stress tolerance. In Ahmad, P., Azooz, M.M. and Prasad, M.N.V. (Eds). Ecophysiology and responses of plants under salt stress. Springer, New York, USA.
  • Wilson, C., Lesch, S.M. and Grieve, C.M. (2000). Growth stage modulates salinity tolerance of New Zealand spinach (Tetragonia tetragonioides, Pall.) and red orach (Atriplex hortensis L.). Ann. Bot. 85: 501–509. doi: 10.1006/anbo.1999.1086
  • Taylor, R.M., Fenn, L.B. and Pety, C.A. (1987).15Nitrogen uptake by grapes with divided roots growing in differentially salinized soils. Hort. Sci. 22: 664.
  • Dong, S., Cheng, L., Scagel, C.F. and Fuchigami, L.H. (2004). Nitrogen mobilization, nitrogen uptake, and growth of cuttings obtained from poplar stock plants grown in different N regimes and sprayed with urea in autumn. Tree Physiol. 24: 355–359. doi: 10.1093/treephys/24.3.355
  • Embleton, T.W.,Matsummura, M., Stolzy, L.H., Devitt, D.A., Jones, W.W., EI-Motaium, R. and Summers, L.L. (1986). Citrus nitrogen fertilizer management, groundwater pollution, soil salinity and nitrogen balance. Appl. Agric. Res. 1: 57–64.
  • Jackson, M.L. (1973). Soil Chemical Analysis. Prentice-Hall of India.
  • Bates, L.S., Waldren, S.P. and Teare, I.D. (1973). Rapid determination of free proline for water-stress studies. Plant Soil 39: 205-207. doi: 10.1007/BF00018060
  • Guenther, E. (1961). The essential oils, VIII. New York, Robert E.D. Von No strand Comp., Inc.
  • Adams, R.P. (2007). Identification of essential oil components by gas chromatography/quadruple mass spectrometry (4th Ed.). Allured Publishing Corp, Carol Stream, USA.
  • Jennings, W. and Shibamoto, T. (1980). Qualitative analysis of flavor and fragrance volatiles by glass capillary gas chromatography. Academic Press, New York, USA.
  • SAS Institute Inc. (2014). SAS/STAT 9.4 User’s Guide. SAS Institute Inc., Cary, North Carolina, USA.
  • Montgomery, D.C. (2017). Design and analysis of experiments (9th Ed.). Wiley, New York, USA.
  • Abdelrazik, T.M., Sabra, A.S., Astatkie, T., Hegazy, M.H., Grulova, D. and Said-Al Ahl, H.A.H. (2016). Response of growth, essential oil content and its constituents of Plectranthus amboinicus to iron and/or urea foliar application under saline irrigation. Int. J. Pharm. Pharm. Sci. 8: 223–231.
  • Said-Al Ahl, H.A.H., Meawad, A.A., Abou-Zeid, E.N. and Ali, M.S. (2010). Response of different basil varieties to soil salinity. Int. Agrophys. 24: 183–188.
  • Said-Al Ahl, H.A.H. and Omer, E.A. (2011). Medicinal and aromatic plants production under salt stress. A review. Herba Pol. 57: 72–87.
  • Ben-Asher, J., Tsuyuki, I., Bravdo, B.A. and Sagih, M. (2006). Irrigation of grapevines with saline water. I. Leaf area index, stomatal conductance, transpiration and photosynthesis. Agric. Water Manag. 83: 13-21. doi: 10.1016/j.agwat.2006.01.002
  • Unver, M.C. and Tilki, F. (2012). Salinity, germination promoting chemicals, temperature and light effects on seed germination of Anethum graveolens L. Bulg. J. Agric. Sci. 18: 1005–1011.
  • Charles, D.J. Joly, R.J. and Simon, J.E. (1990). Effect of osmotic stress on the essential oil content and composition of peppermint. Phytochemistry. 29: 2837–2840. doi: 10.1016/0031-9422(90)87087-B
  • De Pascale, S., Maggio, A. and Barbieri, G. (2005). Soil salinization affects growth, yield and mineral composition of cauliflower and broccoli. Eur. J. Agron. 23: 254–264. doi: 10.1016/j.eja.2004.11.007
  • Pessarakli, M. (1991). Dry matter yield, nitrogen-15 absorption and water uptake by green bean under sodium chloride stress. Crop Sci. 31: 1633–1640. doi: 10.2135/cropsci1991.0011183X003100060051x
  • Suhayda, C.G., Giannini, J.L., Briskin, D.P. and Shannon, M.C. (1990). Electrostatic changes in Lycopericon esculentum root plasma membrane resulting from salt stress. Plant Physiol. 93: 471–478. doi: 10.1104/pp.93.2.471
  • Hawkins, H.J. and Lewis, O.A.M. (1993). Effect of NaCl salinity, nitrogen form, calcium and potassium concentration on nitrogen uptake and kinetics in Triticum aestivum L. cv. Gametos. New Phytol. 124: 171–177. doi: 10.1111/j.1469-8137.1993.tb03807.x
  • Sharma, S.S. and Dietz, K.J. (2006). The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J. Exp. Bot. 57: 711–726. doi: 10.1093/jxb/erj073
  • Matysik, J.A., Bhalu, B. and Mohanty, P. (2002). Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr. Sci. 82: 525–532.
  • Hassanein, H.D., Said-Al Ahl, H.A.H. and Abdelmohsen, M.M. (2014). Antioxidant polyphenolic constituents of Satureja montana L. growing in Egypt. Int. J. Pharm. Pharm. Sci. 6: 578–581.
  • Said-Al Ahl, H.A.H. and Hussien, M.S. (2016). Effect of nitrogen and phosphorus application on herb and essential oil composition of Satureja montana L. ‘carvacrol’ chemotype. J. Chem. Pharm Res. 8: 119–128.
  • Kustrak, D., Kuftinec, J., Blazevic, N. and Maffei, M. (1996). Comparison of the essential oil composition of two subspecies of Satureja montana. J. Essent. Oil Res. 8(1): 7–13. doi: 10.1080/10412905.1996.9700546
  • Beziæ, N., Šamaniæ, I., Dunkiæ, V., Besendorfer, V. and Puizina, J. (2009). Essential oil composition and internal transcribed spacer (ITS) sequence variability of four South-Croatian Satureja species (Lamiaceae). Molecules. 14(3): 925–938. doi: 10.3390/molecules14030925
  • Æavar, S., Maksimoviæ, M., Šoliæ, M.E., Jerkoviæ-Mujkiæ, A. and Bešta, R. (2008). Chemical composition and antioxidant and antimicrobial activity of two Satureja essential oils. Food Chem. 111: 648–653. doi: 10.1016/j.foodchem.2008.04.033
  • Rzepa, J., Sajewicz, M., Baj, T., Gorczyca, P., Wodarek, M., Gowniak, K., Waksmundzka-Hajnos, M. and Kowalska, T. (2012). A comparison of methodical approaches to fingerprinting of the volatile fraction from winter savory (Satureja montana). Chromatogr. Res. Int. Article ID 596807, https://doi.org/10.1155/2012/596807.
  • Ibraliu, A., Dhillon, B.S., Faslia, N. and Stich, B. (2013). Variability of essential oil composition in Albanian accessions of Satureja montana L. J. Med. Plants Res. 4: 1359–1364.
  • Fraternale, D., Giamperi, L., Bucchini, A., Ricci, D., Epifano, F., Genovese, S. and Curini, M. (2007). Chemical composition and antifungal activity of the essential oil of Satureja montana from central Italy. Chem Nat. Compd. 43: 622–624. doi: 10.1007/s10600-007-0210-2
  • Æavar, S., Šoliæ, M.E. and Maksimoviæ, M. (2013). Chemical composition and antioxidant activity of two Satureja species from Mt. Biokovo. Bot. Serb. 37: 159–165.
  • Wesolowska, A., Grzeszczuk, M. and Jadczak, D. (2014). Influence of Harvest Term on the Content of Carvacrol, p-Cymene, γ-Terpinene and β-Caryophyllene in the Essential Oil of Satureja montana. Not. Bot. Horti. Agrobot. Cluj. Napoca 42: 392-397. doi: 10.15835/nbha4229645
  • Miladi, H., Slama, R.B., Mili, D., Zouari, S., Bakhrouf, A. and Ammar, E. (2013). Chemical composition and cytotoxic and antioxidant activities of Satureja montana L. essential oil and its antibacterial potential against Salmonella spp. strains. J. Chem. 13: 9–18.
  • Damjanovic-Vratnica, B., Perovic, A., Sukovic, D. and Perovic, S. (2011). Effect of vegetation cycle on chemical content and antibacterial activity of Satureja montana L. Arch. Biol. Sci. 63: 1173–1179. doi: 10.2298/ABS1104173D

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.