220
Views
13
CrossRef citations to date
0
Altmetric
Articles

The Effects of Carbon Dioxide and Temperature on Essential Oil Composition of Purple Basil (Ocimum basilicum L.)

&
Pages 255-265 | Received 11 Jan 2020, Accepted 10 Mar 2020, Published online: 23 Apr 2020

References

  • Maccracken, M.C. (2001). Global warming: a science overview in: Global warming and energy policy. Kluwer Academic/Plenum Publishers, New York, pp.151-159.
  • Böttcher, F. (1993). Science and fiction of the greenhouse effect and carbon dioxide. Change. 13: 3-6.
  • Kadioglu, M. (2008). Climate Change From today to year 2100. TMMOB Climate Change Symposium, Ankara, 13-14 March 2, pp. 25-44.
  • Unay, A. and Basal, H. (2005). Climatic Changes And Cotton. Journal of Adnan Menderes University Agricultural Faculty. 2: 11-16.
  • Kadioglu, M. (2001). Global climate change and Turkey / we know the end of the air. Guncel Press, Istanbul.
  • IPCC. (2002). Climate Change and Biodiversity, Eds by: Gitay, H., Saurez, A., Watson, R.T. and Dokken, D.J. IPPC (Intergovermantal panel on Climate Change)-Tecnical paper 5, ISBN: 92-9169-104-7, pp. 76.
  • Kim, S.H., Gitz, D.C., Sicher, R.C., Baker, J.T., Timlin, D.J. and Reddy, V.R. (2007). Temperature dependence of growth, development, and photosynthesis in maize under elevated CO2. Environ. Exp. Bot. 61: 224-236. doi: 10.1016/j.envexpbot.2007.06.005
  • Miliauskiene, J., Sakalauskiene, S., Lazauskas, S., Povilaitis, V., Brazaityte, A. and Duchovskis, P. (2016). The competition between winter rape (C3) and maize (C4) plants in response to elevated carbon dioxide and temperature, and drought stres. Zemdirbyste-Agri. 103: 21-28. doi: 10.13080/z-a.2016.103.003
  • Yu, J., Li, R., Fan, N., Yang, Z. and Huang, B. (2017). Metabolic pathways involved in carbon dioxide enhanced heat tolerance in Bermudagrass. Front. Plant Sci. 8: 1-22.
  • Figueiredo, A.C., Barraso, J.G., Pedro, L.G. and Scheffer J.J.C. (2008). Factors affecting secondary metabolite production in plants: volatile components and essential oils. Flav. Frag. J. 23: 213-226. doi: 10.1002/ffj.1875
  • Sangwan, N.S., Farooqi, A.H.A., Shabih, F. and Sangwan, R.S. (2001). Regulation of essential oil production in plants. Plant Growth Regulation. 34: 3-21. doi: 10.1023/A:1013386921596
  • Telci, I., Bayram, E., Yilmaz, G. and Avci, B. (2006). Variability in essential oil composition of Turkish Basils (Ocimum basilicum L.). Biochemical Systematics and Ecology. 34: 489-497. doi: 10.1016/j.bse.2006.01.009
  • Telci, I., Demirtas, I., Bayram, E., Arabaci, O. and Kacar, O. (2010). Environmental variation on aroma components of pulegone/piperitone rich spearmint (M. spicata L.) Ind. Crops Prod. 32: 588-592. doi: 10.1016/j.indcrop.2010.07.009
  • Telci, I., Kacar, O., Bayram, E., Arabaci, O., Demirtas, I., Yilmaz, G., Ozcan, I., Sonmez, C. and Goksu, E. (2011). The effect of ecological conditions on yield and quality traits of selected peppermint (Mentha piperita L.) clones. Ind. Crops Prod. 34: 1193-1197. doi: 10.1016/j.indcrop.2011.04.010
  • Tisserat, B. (2002). Influence of Ultra-High Carbon Dioxide Levels on Growth and Morphogenesis of Lamiaceae Species in Soil. J. Herbs, Spices & Medicinal Plants. 9: 81-89. doi: 10.1300/J044v09n01_09
  • Sujatha, K.B., Uprety, D.C., Rao, D.N., Rao, P.R. and Dwivedi, N. (2008). Up-regulation of photosynthesis and sucrose-P synthase in rice under elevated carbon dioxide and temperature conditions. Plant, Soil and Environ. 54: 155-162. doi: 10.17221/388-PSE
  • Figueiredo, N., Carranca, C., Trindade, H., Pereira, J., Goufo, P., Coutinho, J., Marques, P., Maricato, R. and Varennes A. (2015). Elevated carbon dioxide and temperature effects on rice yield, leaf greenness, and phenological stages duration. Paddy and Water Environ. 13: 313–324. doi: 10.1007/s10333-014-0447-x
  • Lai, S.K., Zhuang, S.T., Wu, Y.Z., Wang, Y.X., Zhu, J.G., Yang, L.X. and Wang, Y.L. (2015). Impact of elevated atmospheric CO2 concentration and temperature on growth and development of super rice. Chinese J. Ecology. 5: 1253-1262.
  • Bencze, S., Veisz, O. and Bedo, Z. (2005). Effect of elevated CO2 and high temperature on the photosynthesis and yield of wheat. Cereal Research Communication. 33: 385-388. doi: 10.1556/CRC.33.2005.1.95
  • Alonso, A., Pérez, P. and Martinez-Carrasco, R. (2009). Growth in elevated CO2 enhances temperature response of photosynthesis in wheat. Physiologia Plantarum. 135: 109-120. doi: 10.1111/j.1399-3054.2008.01177.x
  • Yu, J., Du, H., Xu, M. and Huang, B. (2012). Metabolic responses to heat stress under elevated atmospheric CO2 concentration in a cool-season grass species. J. Amer. Soc. Hort. Sci. 137: 221–228. doi: 10.21273/JASHS.137.4.221
  • Yu, J., Yang, Z., Jespersen, D. and Huang, B. (2014). Photosynthesis and protein metabolism associated with elevated CO2-mitigation of heat stres damages in tall fescue. Environ. Exp. Bot. 99: 75-85. doi: 10.1016/j.envexpbot.2013.09.007
  • Prasad, P.V.V., Boote, K.J., Allen, L.H. and Thomas, J.M.G. (2010). Super-optimal temperatures are detrimental to peanut (Arachis hypogaea L.) reproductive processes and yield at both ambient and elevated carbon dioxide. Glob. Chang. Biol. 9: 1775-1787. doi: 10.1046/j.1365-2486.2003.00708.x
  • Prasad, P.V.V., Boote, K.J. and Allen, L.H. Jr. (2006). Adverse high temperature effects on pollen viability, seed-set, seed yield and harvest index of grain-sorghum [Sorghum bicolor (L.) Moench] are more severe at elevated carbon dioxide due to higher tissue temperatures. Agric. For. Meteorol. 139: 237-251. doi: 10.1016/j.agrformet.2006.07.003
  • Abebe, A., Pathak, H., Singh, S.D., Bhatia, A., Harit, R.C. and Kumar, V. (2016). Growth, yield and quality of maize with elevated atmospheric carbon dioxide and temperature in northwest India. Agri., Ecosyst. Environ. 218: 66-72. doi: 10.1016/j.agee.2015.11.014
  • Bazzaz, F.A., Jasienski, M., Thomas, S.C. and Wayne, P. (1995). Microevolution responses in experimental populations of plants to CO2-enriched environments: parallel results from two model system. Proceedings of the National Academy of Sciences of the United States of America. 92: 8161-8165. doi: 10.1073/pnas.92.18.8161
  • Sharafzadeh, S. and Ordookhani, K. (2011). Influence of carbon dioxide enrichment on accumulation of secondary metabolites in plants. Australian J. Basic and App. Sci. 5(11): 1681-1686.
  • Idso, C.D. and Idso, K.E. (2000). Forecasting world food supplies: The impact of the rising atmospheric CO2 concentration. Technology. 7S : 33-55.
  • Ghasemzadeh, A. and Jaafar, H.Z.E. (2011). Antioxidant potential and anticancer activity of young ginger (Zingiber officinale Roscoe) grown under different CO2 concentration. J. Med. Plant. Res. 5: 3247-3255.
  • Paton, A., Harley, R.M. and Harley, M.M. (1999). Ocimum-an Overview of Relationships and Classification. in: Y. Holm.R. Hiltunen (Eds). Medicinal and Aromatic PlantsIndustrial Profiles. Harwood Academic. 1-38. Amsterdam.
  • Marotti, M., Piccaglia, R. and Giovanelli, E. (1996). Differences in essential oil composition of basil (Ocimum basilicum L.) Italian cultivars related to morphological characteristics. J. Agri. Food Chem. 44: 3926-3929. doi: 10.1021/jf9601067
  • Saran, P.L., Tripathy, V., Meena, R.P., Kumar, J. and Vasara, R.P. (2017). Chemotypic characterization and development of morphological markers in Ocimum basilicum L. germplasm. Sci. Hort. 215: 164-171. doi: 10.1016/j.scienta.2016.12.007
  • Telci, I. (2017). Morphological properties, chemical composition and using area of basil genotypes from Turkey. International Symposium on Medicinal, Aromatic and Dye Plants Malatya, Turkey, 5-7 October 2, pp. 29-35.
  • Avetisyan, A., Markosian, A., Petrosyan, M., Sahakyan, N., Babayan, A., Aloyan, S. and Trchounian, A. (2017). Chemical composition and some biological activities of the essential oils from basil Ocimum different cultivars. BMC Complement Alternative Medicine, 17: 60. doi: 10.1186/s12906-017-1587-5
  • Ahmed, A.F., Attia, F.A.K., Liu, Z., Li, C., Wei, J. and Kang, W. (2019). Antioxidant Activity and Total phenolic content of Essential Oils and Extracts of Sweet Basil (Ocimum basilicum L.) plants. Food Sci. Human Wellness, 8(3): 299-305. doi: 10.1016/j.fshw.2019.07.004
  • Padalia, R.C., Verman, R.S., Chauhan, A. and Chanotiya, C.S. (2013). Changes in aroma profiles of 11 Indian Ocimum taxa during plant ontogeny. Acta Physiologiae Plantarum. 35: 2567-2587. doi: 10.1007/s11738-013-1293-y
  • Tarhan, S., Telci, I., Tuncay, M.T. and Polatci, H. (2011). Peppermint drying performance of contact dryer in terms of product quality, energy consumption, and drying duration. Drying Tech. 29: 642-651. doi: 10.1080/07373937.2010.520421
  • Verma, R.S., Padalia, R.C., Chauhan, A. and Thul, S.T. (2013). Exploring compositional diversity in the essential oils of 34 Ocimum taxa from Indian flora. Ind. Crop. Prod. 45: 7-19. doi: 10.1016/j.indcrop.2012.12.005
  • Simon, J.E., Quinn J. and Murray, R.G. (1990). Basil: A Source of Essential Oils. In: J. Janick and J.E. Simon (eds.), Advances in New Crops. Timber Press, Portland. 484-489.
  • Gupta, S.C. (1996). Variation in herbage yield, oil yield and major component of various Ocimum species/ varieties (chemotypes) harvested at different stages of maturity. J. Essent. Oil Res. 8: 275-279. doi: 10.1080/10412905.1996.9700613
  • Marotti, M., Piccaglia, R. and Giovanelli, E. (1996). Differences in essential oil composition of basil (Ocimum basilicum L.) Italian cultivars related to morphological characteristics. J. Agri. Food Chem. 44: 3926-3929. doi: 10.1021/jf9601067
  • Lawrence, B.M. (1998). Developments in food sciences. In: Flavor and Fragrance: A World Perspective. Edits., B.M. Lawrence, B.D. Mookhejee and B.T. Willis, Elsevier, Amsterdam. pp. 22-26.
  • Verma, R.S., Bisht, P.S., Padalia, R.C., Sakia, D. and Chauhan, A. (2011). Chemical composition and antibacterial activity of essential oil from two Ocimum spp grown in sub-tropical India during spring-summer cropping season. Asian J. Tra. Med. 6(5): 211-217.
  • Javanmardi, J., Khalighi, A., Kashi, A., Bais, H.P. and Vivanco, J.M. (2002). Chemical characterization of basil (Ocimum basilicum L.) found in local accessions and used in traditional medicines in Iran. J. Agri. Food Chem. 50: 5878-5883. doi: 10.1021/jf020487q
  • Fletcher, R.S., Slimmon, T. and Kott, L.S. (2010). Environmental factors affecting the accumulation of rosmarinic acid in spearmint (Mentha spicata L.) and peppermint (Mentha piperita L.). The Open Agri. J. 4: 10-16. doi: 10.2174/1874331501004010010
  • Luis, J.C., Martin Pérez, R. and Valdés González, F. (2007). UV-B radiation effects on foliar concentrations of rosmarinic and carnosic acids in rosemary plants. Food Chem. 101: 1211-1215. doi: 10.1016/j.foodchem.2006.03.023

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.