74
Views
1
CrossRef citations to date
0
Altmetric
Brief Reports

Essential Oils from Leaves of Virola calophylla, Virola multinervia, and Virola pavonis (Myristicaceae): Chemical Composition and Larvicidal Activity against Aedes aegypti

, , , , , ORCID Icon, , ORCID Icon & show all
Pages 453-463 | Received 28 Oct 2019, Accepted 27 May 2020, Published online: 24 Aug 2020

References

  • Quintanilha, L.G. and Lobão, A.Q. (2017). Flora do Rio de Janeiro: Myristicaceae.Rodriguesia. 68: 85-89.
  • Rodrigues, W.A. (1980). Revisão taxonómica das espécies de Virola Aublet (Myristicaceae) do Brasil. Acta Amaz. 10: 1–127.
  • Rodrigues, W. (2015). Myristicaceae in Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro. [accessedon 01 April 2019]. Availablefrom: http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB10197.
  • Lauro, E.B., Santos, L.S., Ferri, P.H., Phillipson, J.D., Paine, A. and Croft, S.L. (2000). Anti-leishmanial activity of neolignans from Virola species and synthetic analogues. Phytochem. Anal. 55: 589–595. doi: 10.1016/S0031-9422(00)00240-5
  • Lopes, N.P., Chicaro, P., Kato, M.J., Albuquerque, S. and Yoshida, M. (1998). Flavonoids and lignans from Virola surinamensis twigs and their in vitro activity against Trypanosoma cruzi. Planta Med. 64: 667–669. doi: 10.1055/s-2006-957548
  • Rezende, K.R., Davino, S.C., Barros, S.B.M. and Kato, M.J. (2005). Antioxidant activity of aryltetralone lignans and derivatives from Virolas ebifera (Aubl.). Nat. Prod. Res. 19: 662-666. doi: 10.1080/14786410412331302118
  • Fernandes, K.R.P., Bittercourt, P.S., Souza, A.D.L., Souza, A.Q.L., Silva, F.M.A., Lima, E.S., Acho, L.D.R., Nunomura, R.C.S., Teixeira, A.F. and Koolen, H.H.F. (2019). Phenolic compounds from Virola venosa (Myristicaceae) and evaluation of their antioxidant and enzyme inhibition potential. Acta Amaz. 49: 48–53. doi: 10.1590/1809-4392201800832
  • Sartorelli, P., Young, M.C.M. and Kato, M.J. (1998). Antifungal lignans from the arils of Virola oleifera. Phytochemistry. 47: 1003–1006. doi: 10.1016/S0031-9422(98)80061-7
  • Zacchino, S., Rodríguez, G., Santecchia, C., Pezzenati, G., Giannini, F. and Enriz, R. (1998). In vitro studies on mode of action of antifungal 8.O.4’-neolignans occurring in certain species of Virola and related genera of Myristicaceae. J. Ethnopharmacol. 62: 35–41. doi: 10.1016/S0378-8741(98)00056-7
  • Constanza, R.O., Cuca, L.E. and Martínez, J.C. (1998). Estudio Químico y Microbiológico del Extracto Etanolico de Las Hojas y Corteza de Virola calophylla (Myristicaceae). Rev. Col. Cienc. Quím. Farm. No. 27: 25–29.
  • Schultes, R.E. (1979). Evolution of the identification of the myristicaceous hallucinogens of South America. J. Ethnopharmacol. 1: 211–239. doi: 10.1016/S0378-8741(79)80013-6
  • Schultes, R.E. and Holmstedt, B. (1971). Miscellaneous notes on Myristicaceous plants of South America. Lloyd. 34: 61–78.
  • Lai, A., Tin-Wa, M., Mika, E.S., Persinos, G.J. and Farnsworth, N.R. (1973). Phytochemical investigation of Virola peruvianaa new hallucinogenic plant. J. Pharm. Sci. 62: 1461–1563. doi: 10.1002/jps.2600620914
  • Schultes, R.E. (1976). Indole alkaloids in plant hallucinogens. J. Psychoactive Drugs. 8: 7–25. doi: 10.1080/02791072.1976.10472004
  • Gottlieb, O.R. (1979). Chemical studies on medicinal Myristicaceae from Amazonia. J. Ethnopharmacol. 1: 309–323. doi: 10.1016/S0378-8741(79)80001-X
  • Romoff, P. and Yoshida, M. (1997). Chemical constituents from Myristicaceae. J. Brazilian Assotiation Adv. Sci. 49: 345–353.
  • Simon, F., Savini, H. and Parola, P. (2008). Chikungunya: A Paradigm of Emergence and Globalization of Vector-Borne Diseases. Med. Clin. North Am. 92: 1323–1343. doi: 10.1016/j.mcna.2008.07.008
  • Puccioni-Sohler, M., Roveroni, N., Rosadas, C., Ferry, F., Peralta, J.M. and Tanuri, A. (2017). Dengue infection in the nervous system: lessons learned for Zika and Chikungunya. Arq. Neuropsiquiatr. 75: 123–126. doi: 10.1590/0004-282x20160189
  • Wilder-Smith, A., Gubler, D.J., Weaver, S.C., Monath, T.P., Heymann, D. l. and Scott, T.W. (2017). Epidemic arboviral diseases: priorities for research and public health. Lancet Infect. Dis. 17: 101–106. doi: 10.1016/S1473-3099(16)30518-7
  • WHO. (2019). Dengue and severe dengue. World Health Organization. Geneva, Switzerland.
  • Pan American Health Organization(PAHO)/World Health Organization. (2019). Epidemio- logical Update: Dengue. World Health Organization, Washington, D.C.
  • Rozendaal, J.A. (1997). Vector control: methods for use by individuals and communities. World Health Organization. Geneva, Switzerland.
  • Braga, I.A. and Valle, D. (2007). Aedes aegypti: histórico do controle no Brasil. Epidemiol. Serv. Sau. 16: 113-118.
  • Pavela, R. (2015). Essential oils for the development of eco-friendly mosquito larvicides: A review. Ind. Crop. Prod. 76: 174–187. doi: 10.1016/j.indcrop.2015.06.050
  • Viana-Medeiros, P.F., Bellinato, D.F., Martins, A.J. and Valle, D. (2017). Insecticide resistance, associated mechanisms and fitness aspects in two BrazilianStegomyia aegypti (= Aedes aegypti) populations. Med. Vet. Entomol. 31: 340–350. doi: 10.1111/mve.12241
  • Costa, E.V., Dutra, L.M., Salvador, M.J., Ribeiro, L.H.G., Gadelha, F.R. and Carvalho, J.E. (2013). Chemical composition of the essential oils of Annona pickelii and Annona salzmannii (Annonaceae), and their antitumor and trypanocidal activities. Nat. Prod. Res. 27: 997–1001. doi: 10.1080/14786419.2012.686913
  • Regnault-Roger, C., Vincent, C. and Arnason, J.T. (2012). Essential oils in insect control: low-risk products in a high-stakes world. Annu. Rev. Entomol. 57: 405–424. doi: 10.1146/annurev-ento-120710-100554
  • Pavela, R. (2015). Acute toxicity and synergistic and antagonistic effects of the aromatic com- pounds of some essential oils against Culex quinquefasciatus say larvae. Parasitol. Res. 114: 3835–3853. doi: 10.1007/s00436-015-4614-9
  • Pavela, R. (2016). History, Presence and Perspective of Using Plant Extracts as Commercial Botanical Insecticides and Farm Products for Protection against Insects-a Review. Plant Sci. 52: 229–241.
  • Huang, H.T., Lin, C.C., Kuo, T.C., Chen, S.J. and Huang, R.N. (2019). Phytochemical composition and larvicidal activity of essential oils from herbal plants. Planta. 250: 59–68. doi: 10.1007/s00425-019-03147-w
  • Silva, T.B., Menezes, L.R.A., Sampaio, M.F.C., Meira, C.S., Guimarães, E.T., Soares, M.B.P., Prata, A.P.N., Nogueira, P.C.L. and Costa, E.V.C. (2013). Chemical composition and anti-Trypanosoma cruzi activity of essential oils obtained from leaves of Xylopia frutescens and X. laevigata (Annonaceae). Nat. Prod. Com. 8: 403–406.
  • Van den Dool, H. and Kratz, P.D. (1963). A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. A. 11: 463–471. doi: 10.1016/S0021-9673(01)80947-X
  • Adams, R.P. (2017). Identification of Essential Oil Components by Gas Chromatography/ Mass Spectrometry. 5th Ed.onl. Gruver, TX: Texensis Publishing.
  • Babushok, V.I., Linstrom, P.J. and Zenkevich, I.G. (2011). Retention indices for frequently reported compounds of plant essential oils. J. Phys. Chem. 40: 043101-1 -043101-47.
  • Huzar, E., Dziêciol, M., Wodnicka, A., Örün, H., Ýçöz, A. and Çiçek, E. (2018). Influence of hydrodistillation conditions on yield and composition of coriander (Coriandrum sativum L.) essential oil. Polish J. Food Nutr. Sci. 68: 243–249. doi: 10.1515/pjfns-2018-0003
  • Lima, E.J.S.P., Alves, R.G., D’Elia, G.M.A., Anunciação, T.A., Silva, V.R., Santos, L.S., Soares, M.B.P., Cardozo, N.M.D., Costa, E.V., Silva, F.M.A., Koolen, H.H.F. and Bezerra, D.P. (2018). Antitumor effect of the essential oil from the leaves of Croton matourensis Aubl. (Euphorbiaceae). Molecules. 23: 1–12.
  • WHO. (2005). Guidelines for laboratory and field testing of mosquito larvicides. World Health Organization. Geneva, Switzerland.
  • Mesquita, R.S., Tadei, W.P. and Bastos, A.M.B. (2018). Determination of the larvicidal activity of benzoyl thiosemicarbazone and its Ni (II) complex against Aedes aegypti and Anopheles darlingi larvae in Amazonas, Brazil. J. Entomol. Nematol. 10: 37–42. doi: 10.5897/JEN2018.0207
  • Finney, D.J. (1971). Probit analysis. Cambridge: University Press Cambridge. 77p. England.
  • Robertson, J.L., Preisler, H.K. and Russell, R.M. (2003). Poloplusprobit and logit analysis. LeOra Software LLC. Parma (MO), USA.
  • Sabulal, B., Kurup, R., Sumitha B. and George, V. (2007). Chemical composition of the leaf oils of Myristica malabarica Lam. and Gymnacranthera canarica (King) Warb. J. Essent. Oil Res. 19: 323–325. doi: 10.1080/10412905.2007.9699293
  • Courtois, E.A., Paine, C.E.T., Blandinieres, P.A., Stien, D., Bessiere, J.M., Houel, E., Baraloto, C. and Chave, J. (2009). Diversity of the volatile organic compounds emitted by 55 species of tropical trees: a survey in French Guiana. J. Chem. Ecol. 35: 1349–1362. doi: 10.1007/s10886-009-9718-1
  • Lopes, N.P., Kato, M.J., Andrade, E.H., Maia, J.G., Yoshida, M., Planchart, A.R. and Katzin, A.M. (1999). Antimalarial use of volatile oil from leaves of Virolasurinamensis (Rol.) Warb. by waiãpi amazon Indians. J. Ethnopharmacol. 67: 313–319. doi: 10.1016/S0378-8741(99)00072-0
  • Suffredini, I.B., Sousa, S.R.N., Frana, S.A., Suffredini, H.B., Díaz, I.E. and Paciencia, M.L. (2016). Multivariate analysis of the terpene composition of Osteophloeumplaty spermum Warb. (Myristicaceae) and its relationship to seasonal variation over a two-year period. J. Essent. Oil Bear. Plant. 19: 1380-1393. doi: 10.1080/0972060X.2016.1215264
  • WHO. (1996). Report of the WHO informal consultation on the evaluation and testing of insecticides.World Health Organization. Geneva, Switzerland.
  • Cheng, S.S., Chang, H.T., Chang, S.T., Tsai, K.H. and Chen, W.J. (2003). Bioactivity of selected plant essential oils against the yellow fever mosquito Aedes aegypti larvae. Bioresour. Technol. 89: 99–102. doi: 10.1016/S0960-8524(03)00008-7
  • Dória, G.A., Silva, W.J., Carvalho, G.A., Alves, P.B. and Cavalcanti, S.C. (2010). A study of the larvicidal activity of two Croton species from northeastern Brazil against Aedes aegypti. Pharm. bio. 48: 615–620. doi: 10.3109/13880200903222952
  • Govindarajan, M. and Benelli, G. (2016). Eco-friendly larvicides from Indian plants: Effective- ness of lavandulyl acetate and bicyclogermacrene on malaria, dengue and Japanese encephalitis mosquito vectors. Ecotoxicol. Env. Saf. 133: 395–402. doi: 10.1016/j.ecoenv.2016.07.035
  • Silva, W.J., Dória, G.A.A., Maia, R.T., Nunes, R.S., Carvalho, G.A., Blank, A.F., Alves, P.B., Marçal, R.M. and Cavalcanti, S.C.H. (2008). Effects of essential oils on Aedes aegypti larvae: Alternatives to environmentally safe insecticides. Bioresour. Technol. 99: 3251–3255. doi: 10.1016/j.biortech.2007.05.064
  • Hung, N.H., Satyal, P., Hieu, H.V., Chuong, N.T.H., Dai, D.N., Huong, L.T., Tai, T.A. and Setzer, W.N. (2019). Mosquito Larvicidal activity of the essential oils of Erechtites species growing wild in Vietnam. Insects. 10: 1–14. doi: 10.3390/insects10020047
  • Govindarajan, M., Rajeswary, M. and Benelli, G. (2016). -Cadinene, Calarene and -4-Carene from Kadsura heteroclita essential oil as novel larvicides against Malaria, Dengue and Filariasis mosquitoes. Ecotoxicol. Environ. Saf. 19: 565–571.
  • Huang, Y., Lin, M., Jia, M. Hu, J. and Zhu, L. (2020). Chemical composition and larvicidal activity against Aedes mosquitoes of essential oils from Arisaema fargesii. Pest Manag. Sci. 76: 534–542. doi: 10.1002/ps.5542
  • Chandra, M., Prakash, O., Kumar, R., Bachheti, R.K., Bhushan, B., Kumar, M. and Pant, A.K. (2017). -selinene-rich essential oils from the parts of Callicarpa macrophylla and their antioxidant and pharmacological activities. Medicines Basel. 4: 1–17. doi: 10.3390/medicines4010001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.