208
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Anti-inflammatory Activity of Essential Oil from Leaves of Blumea balsamifera (L.) DC through Inhibiting TLR4/NF-kB Signaling Pathways and NLRP3 Inflammasome Activation in LPS-induced RAW264.7 Macrophage Cells

, , , , , , , , & show all
Pages 160-176 | Received 15 Jun 2020, Accepted 01 Apr 2021, Published online: 11 May 2021

References

  • Zhou, C.K., Jing, G., Hong, J., Wen, L. (2021). Benzoylaconine Modulates LPS-Induced Responses through Inhibition of Toll-Like Receptor-Mediated NF-κB and MAPK Signaling in RAW264. 7 Cells. Research Square. (1): 1-13.
  • Zheng, F., Dong, X., Meng, X. (2018). Anti-Inflammatory Effects of Taraxasterol on LPS-Stimulated Human Umbilical Vein Endothelial Cells. Inflammation. 41(5): 1755-1761.
  • Ren, X., Shao, X.X., Li, X.X, Jia, X.H., Song, T., Zhou, W.Y. (2020). Identifying potential treatments of COVID-19 from Traditional Chinese Medicine (TCM) by using a data-driven approach. Journal of Ethnopharmacology. 258(5): 112932.
  • Mehta, P., Mcauley, D.F., Brown, M., Sanchez, E., Tattersall, R.S., Manson, J.J. (2020). COVID-19/: consider cytokine storm syndromes and immunosuppression. Correspondence. 20: 19-20.
  • Zhou, Y., Fu, B., Zheng, X., Wang, D., Sun, R., Tian, Z. (2020). Pathogenic T cells and inflammatory monocytes incite inflammatory storm in severe COVID-19 patients. Perspective immunology. 6: 1-15.
  • Xu, X. L., Yin, P., Wan, C. R. (2018). Punicalagin Inhibits Inflammation in LPS-Induced RAW264.7 Macrophages via the Suppression of TLR4-Mediated MAPKs and NF-êB Activation. Inflammation. (37): 956-965.
  • Xie, J., Li, Q., Zhu, X., Gao, Y., Zhao, W. (2019). Biochemical and Biophysical Research Communications IGF2BP1 promotes LPS-induced NF-κB activation and pro-inflammatory cytokines production in human macrophages and monocytes. Biochemical and Biophysical Research Communications. 5(13): 820-826.
  • Wan, P., Xie, M., Chen, G., Da, Z., Hu, B., Zeng, X. (2019). Anti-inflammatory effects of dicaffeoylquinic acids from Ilex kudingcha on lipopolysaccharide-treated RAW264.7 macrophages and potential mechanisms. Food and Chemical Toxicology. 126: 332-42.
  • He, H., Genovese, K.J., Nisbet, D.J., Kogut, M.H. (2016). Profile of Toll-like receptor expressions and induction of nitric oxide synthesis by Toll-like receptor agonists in chicken monocytes. Molecular Immunology. 43(7): 783-789.
  • Arciniegas, E., Carrillo, L.M., Sanctis, J.B., Candelle, D. (2018). Possible role of NF-κB in the embryonic vascular remodeling and the endothelial mesenchymal transition process. Cell Adhesion & Migration. 2(1): 17-29.
  • Afonina, I.S., Zhong, Z., Karin, M., Beyaert, R. (2017). Limiting inflammation the negative regulation of NF-κB and the NLRP3 inflammasome. Nature Immunology. 18(8): 861-869.
  • Swanson, K.V., Deng, M., Ting, J.P. 2019). The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nature Reviews Immunology. 19(8): 1-13.
  • Shimizu, H., Sakimoto, T., Yamagami, S. (2019). Pro-inflammatory role of NLRP3 inflamma-some in experimental sterile corneal inflammation. Scientific Reports. 9: 1-11.
  • Claude, J., Tomani, D., Kagisha, V. (2020). The Inhibition of NLRP3 Inflammasome and IL-6 Production by Hibiscus noldeae Baker f. Derived Constituents Provides a Link to Its Anti-Inflammatory Therapeutic Potentials. Molecules. 25: 1-16.
  • Xu, M.L., Hdyhzs, T.L. (2019). Ginsenoside Rg1 attenuates cardiomyocyte apoptosis and inflammation via the TLR4/NF-κB/NLRP3 pathway. J. Cell Biochem. 121(4): 2994-3004.
  • Kim, A.T., Kim, D.O. (2019). Anti-inflammatory effects of vanadium-binding protein from Halocynthia roretzi in LPS-stimulated RAW264. 7 macrophages through NF-κB and MAPK pathways. International Journal of Biological Macromolecules. 133: 732-8.
  • Zhang, Z., Tian, L., Jiang, K. (2019). Propofol attenuates inflammatory response and apoptosis to protect D-galactosamine/lipopolysaccharide induced acute liver injury via regulating TLR4/NF-κB/NLRP3 pathway. International Immunopharmacology. 77(4):105974.
  • Zhou, Z., Su, Y., Fa, X. (2019). Isorhynchophylline exerts anti-inflammatory and anti-oxidative activities in LPS-stimulated murine alveolar macrophages. Life Sciences. 223(2): 137-45.
  • He, H., Jiang, H., Chen, Y. (2018). Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity. Nature Communications. 6: 1-12.
  • Tan, D., Yang, Z., Zhang, Q. (2020). Simultaneous Quantitative Determination of Polyphenolic Compounds in Blumea balsamifera (Ai-Na-Xiang, Sembung ) by High-Performance Liquid Chromatography with Photodiode Array Detector. International Journal of Analytical Chemistry. Article ID 9731327, 9 pages.
  • Supiandi, M.I., Mahanal, S., Zubaidah, S., Julung, H. (2019). Ethnobotany of traditional medicinal plants used by Dayak Desa Community in Sintang , West Kalimantan, Indonesia. Biodiversitas. 20(5): 1264-1270.
  • Eriadi, A., Alfiah, S. (2019). Uji Toksisitas Sub Akut Ekstrak Etanol Daun Sembung (Blumea balsamifera L . DC) Terhadap Fungsi Hati Dan Ginjal. Jurnal Farmasi Higea. 11(1): 23-31.
  • Ayu, I.G., Kusumawati, W., Reyunika, I.N., Bagus, I., Yogeswara, A., Mustika, I.G. (2018). Effect of loloh sembung (Blumea balsamifera) maturity stage on antioxidant activity. Ndonesian Journal of Nutrition and Dietetics. 6(1): 1-6.
  • Shu, X., Zhang, Y., Guan, L., Chen, Z., Huang, M. (2020). Antibacterial secondary metabolites of Clonostachys rosea, an endophytic fungus from Blumea balsamifera ( L.) DC. Molecules. 4: 1650-1658.
  • National Pharmacopoeia Commission. (2015). Pharmacopoeia of the People ‘s Republic of China [M], Fourth Department Beijing: China Medical Technology Press. 203 p.
  • Qi, W.U., Xiao, T., Cheng, H.U., Li, W. (2016). Optimization of Extraction Process of Volatile Oil from Different Lycium barbarum L. and Analysis of Its Difference in Yield. Science and Technology of Food Industry. 20: 118-22.
  • Gao, Y., Wang, L. (2020). Combined with the evaluation of antibacterial and anti-inflammatory activity in vitro to screen the extraction process of Aina fragrant oil. Journal of Chinese Materials. 43: 1198-04.
  • Sharma, A., Sharma, L., Goyal, R. (2020). GC/MS Characterization, in-vitro Antioxidant, Anti-inflammatory and Antimicrobial Activity of Essential Oils from Pinus Plant Species from Himachal Pradesh, India. Journal of Essential Oil-Bearing Plants. 23(3): 522-531.
  • Gogoi, R., Loying, R., Sarma, N., Munda, S., Kumar, P.S., Lal, M. (2018). A comparative study on antioxidant, anti-inflammatory, genotoxicity, anti-microbial activities and chemical composition of fruit and leaf essential oils of Litsea cubeba Pers from North-east India. Industrial Crops and Products. 125(11): 131-139.
  • Bordbar, G.A., Madandoust, M. (2020). Influence of Salicylic Acid on Essential Oil Content and Changes its Compositions in Cuminum cyminum L. Journal of Essential Oil-Bearing Plants. 3(23): 1-6.
  • Matuka, T., Oyedeji, O., Gondwe, M., Oyedeji, A. (2020). Chemical Composition and In vivo Anti-inflammatory Activity of Essential Oils from Citrus sinensis (L.) osbeck Growing in South Africa. Journal of Essential Oil-Bearing Plants. 23(4): 638-47.
  • Najar, B., Pistelli, L., Buhagiar, J. (2020). Volatilomic Analyses of Tuscan Juniperus oxycedrus L. and in vitro Cytotoxic Effect of Its Essential Oils on Human Cell Lines. Journal of Essential Oil-Bearing Plants. 23(4): 756-771.
  • Ma, L., Shen, C., Gao, L., Li, D., Shang, Y., Yin, K. (2016). Anti-inflammatory activity of chitosan nanoparticles carrying NF-κB/p65 antisense oligonucleotide in RAW264.7 macropghage stimulated by lipopolysaccharide. Colloids and Surfaces B: Biointerfaces. 142(1): 297-306.
  • Fan, G., Jiang, X., Wu, X., Fordjour, P.A., Miao, L., Zhang, H. (2016). Anti-Inflammatory Activity of Tanshinone IIA in LPS-Stimulated RAW264.7 Macrophages via miRNAs and TLR4– NF-κB Pathway. Inflammation. 39(1): 375-84.
  • Han, J.M., Lee, E.K., Gong, S.Y., Sohng, J.K., Kang, Y.J., Jung, H.J. (2019). Sparassis crispa exerts anti-inflammatory activity via suppression of TLR-mediated NF-κB and MAPK signaling pathways in LPS-induced RAW264.7 macrophage cells. Journal of Ethnopharmacology. 2(31): 10-8.
  • Taticchi, A., Urbani, S., Albi, E., Servili, M. et al. (2019). In Vitro Anti-Inflammatory Effects of Phenolic Compounds from Moraiolo Virgin Olive Oil (MVOO) in Brain Cells via Regulating the TLR4/NLRP3 Axis. Molecules. 24(24): 4523.
  • Kim, H.N., Baek, J.K., Park, S.B., Kim, J.D., Son, H., Park, G.H. (2019). Anti-inflammatory effect of Vaccinium oldhamii stems through inhibition of NF-κB and MAPK / ATF2 signaling activation in LPS-stimulated RAW264. 7 cells. BMC Complementary and Alternative Medicine. 4: 1-14.
  • Seong, W.M., Chang, B.A., Yunok, O. (2019). Lotus (Nelumbo nucifera) seed protein isolate exerts anti-inflammatory and antioxidant effects in LPS-stimulated RAW264. 7 macrophages via inhibiting NF-κB and MAPK pathways , and upregulating catalase activity. International Journal of Biological Macromolecules. 13: 791-7.
  • Hwang, D.K., Kang, M.J., Mi, J.J., Kim, G.D. (2019). Anti-Inflammatory Activity of β-thymosin Peptide Derived from Pacific Oyster (Crassostrea gigas) on NO and PGE 2 Production by Down-Regulating. Marine Drugs. 9: 1-11.
  • Wen, Z.S., Xiang, X.W., Jin, H.X., Guo, X.Y., Liu, L.J., Huang, Y.N. (2016). Composition and anti-inflammatory effect of polysaccharides from Sargassum horneri in RAW264.7 macrophages. International Journal of Biological Macromolecules. 16: 403-13.
  • Borah, A., Paw, M., Gogoi, R. (2019). Chemical composition, antioxidant, anti-inflammatory, anti-microbial and in-vitro cytotoxic efficacy of essential oil of Curcuma caesia Roxb. leaves: An endangered medicinal plant of North East India. Industrial Crops and Products. 129: 448-454.
  • Paw, M., Gogoi, R., Sarma, N., Pandey, S.K., Borah, A., Begum, T., Mohan, L. (2019). Study of antioxidant, anti-inflammatory, genotoxicity, antimicrobial activities and analysis of different constituents found in rhizome essential oil of Curcuma caesia Roxb., collected from northeast India. Current Pharmaceutical Biotechnology. 9: 11-18
  • Wang, Y., Yu, X. (2019). Biological Activities and Chemical Compositions of Volatile Oil and Essential Oil from the Leaves of Blumea balsamifera. Journal of Essential Oil Bearing Plants. 21(6): 1511-1531.
  • Gandhi, G.R., Vasconcelos, A.B.S., Haran. G.H., Calisto, V.K., Da, S., Jothi, G., Quintans, J. (2020). Essential oils and its bioactive compounds modulating cytokines: A systematic review on anti-asthmatic and immunomodulatory properties. Phytomedicine. 73: 152854.
  • Loying, R., Gogoi, R., Sarma, N., Borah, A., Munda, S., Pandey, S.K., Mohan, L. (2019). Chemical compositions, in vitro anti-oxidant, anti-microbial, anti-inflammatory and cytotoxic activities of essential oil of Acorus calamus L. Rhizome from North-East India. Journal of Essential Oil Bearing Plants. 22(5): 1299-1312.
  • Gogoi, R., Sarma, N., Loying, R., Pandey, S.K., Begum, T., Mohan, L. (2020). A comparative analysis of bark and leaf essential oil and their chemical composition, antioxidant, anti-inflammatory, antimicrobial activities and genotoxic potential of North East Indian Cinnamomum zeylanicum Blume. The Natural Products Journal.
  • Ekpenyong, C.E., Akpan, E.E. (2017). Use of Cymbopogon citratus essential oil in food preservation/ : Recent advances and future perspectives future perspectives. Critical Reviews in Food Science and Nutrition. 57(12): 2541-59.
  • He, C., Yang, P., Wang, L. (2020). Antibacterial effect of Blumea balsamifera DC . essential oil against Haemophilus parasuis. Archives of Microbiology. 12(34): 567-8.
  • Montealegre, C.M., Leon, R.L. (2016). Blumea balsamifera (sambong) tea as a therapeutic drink for calcium oxalate stones. MATEC Web of Conferences. 62: 1-4.
  • Benelli, G., Govindarajan, M., Rajeswary, M., Senthilmurugan, S., Vijayan, P., Alharbi, N.S. (2017). Larvicidal activity of Blumea eriantha essential oil and its components against six mosquito species, including Zika virus vectors/: the promising potential of (4E, 6Z) -allo-ocimene, carvotanacetone and dodecyl acetate. Parasitology Research. 116: 1175-1188.
  • Chen, Z.X., Xu, Q.Q., Shan, C.S., Yi, H.S., Wang, Y., Raymond, C.C., Zheng, G.Q. (2019). Borneol for Regulating the Permeability of the Blood-Brain Barrier in Experimental Ischemic Stroke: Preclinical Evidence and Possible Mechanism. Oxidative medicine and cellular longevity. 2019: 2936737.
  • Fauzi, F., Haryanti, S. (2019). Kajian Tumbuhan Obat yang Banyak Digunakan untuk Aprodisiaka oleh Beberapa Etnis Indonesia. Media Penelitian dan Pengembangan Kesehatan. 29(1): 51-64.
  • Yan, X.A., Xiang, L.I. (2015). Inflammatory Analgesic and Hemostasis Activities of Different Extracting Fractions of Blumea balsamifera Residue. Nat. Prod. Res. 27: 1086-1091.
  • Pang, Y., Wang, D., Hu, X. (2014). Effect of volatile oil from Blumea Balsamifera (L.) DC. leaves on wound healing in mice. Journal of Traditional Chinese Medicine. 34(6): 716-724.
  • Pang, Y., Wang, D., Fan, Z. (2014). Blumea balsamifera-A Phytochemical and Pharmacological Review. Molecules. 9: 9453-9477.
  • Song, J., Li, T., Cheng, X., Ji, X., Gao, D., Du, M. (2016). Sea cucumber peptides exert anti-inflammatory activity through suppressing NF-κB and MAPK and inducing HO-1 in RAW264.7 macrophages. Food and Function. 7(6): 2773-9.
  • Dong, G., Xiong, H., Si, C. (2019). Leukadherin-1-Mediated Activation of CD11b Inhibits LPS-Induced Pro-inflammatory Response in Macrophages and Protects Mice Against Endotoxic Shock by Blocking LPS-TLR4 Interaction. Frontiers in Immunology. 10: 1-14.
  • Wu, A., Yang, Z., Huan, g Y., Yuan, H., Lin, C., Wang, T. (2020). Natural phenylethanoid glycosides isolated from Callicarpa kwangtungensis suppressed lipopolysaccharide-mediated inflammatory response via activating Keap1/Nrf2/HO-1 pathway in RAW 264.7 macrophages cell. Journal of Ethnopharmacology. 25(8): 1-8.
  • Li, X., Shen, J., Jiang, Y. (2016). Anti-inflammatory effects of chloranthalactone B in LPS-stimulated RAW264.7 cells. International Journal of Molecular Sciences. 17(11): 1-14.
  • Kim, H.Y., Han, A.R., Kil, Y.S., Seo, E.K., Jin, C.H. (2019). Anti-inflammatory effects of catalpalactone isolated from Catalpa ovata in LPS-induced RAW264.7 cells. Molecules. 24(7): 1-12.
  • Hung, Y., Wang, S., Suzuki, K., Fang, S., Chen, C. (2019). Bavachin attenuates LPS-induced inflammatory response and inhibits the activation of NLRP3 inflammasome in macrophages. Phytomedicine. 5(9): 1-9.
  • Seo, M., Goo, T.W., Chung, M.Y. (2017). Tenebrio molitor larvae inhibit adipogenesis through AMPK and MAPKs signaling in 3T3-L1 adipocytes and obesity in high-fat diet-induced obese mice. International Journal of Molecular Sciences. 18(3): 1-14.
  • Zhang, C., Wang, N., Man, K. (2020). Direct inhibition of the TLR4 / MyD88 pathway by geniposide suppresses HIF-1 α-independent VEGF expression and angiogenesis in hepatocellular carcinoma. Br. J. Pharmacol. 17(7): 3240-3257.
  • Li, Y., Yang, S., Lun, J. (2020). Inhibitory Effects of the Lactobacillus rhamnosus GG Effector Protein HM0539 on Inflammatory Response Through the TLR4 / MyD88 / NF-κB Axis. Frontiers in Immunology. 11: 1-12.
  • Hu, N., Wang, C., Dai, X. (2019). Phillygenin inhibits LPS-induced activation and in fl ammation of LX2 cells by TLR4/MyD88 / NF-κB signaling pathway. Journal of Ethnopharmacology. 1(6): 112361.
  • He, A., Ji, R., Shao, J., He, C., Jin, M., Xu, Y. (2018). TLR4-MyD88-TRAF6-TAK1 Complex-Mediated NF-κB Activation Contribute to the Anti-Inflammatory Effect of V8 in LPS-Induced Human Cervical Cancer SiHa Cells. Inflammation. 8: 1-10.
  • Li, X.X., Zheng, X., Liu, Z. (2020). Cryptotanshinone from Salvia miltiorrhiza Bunge (Danshen) inhibited inflammatory responses via TLR4 / MyD88 signaling pathway. Chinese Medicine. 15(20): 1-13.
  • Gao, H., Huang, L., Yang, S. (2019). Diethyl Blechnic Exhibits Anti-Inflammatory and Anti-oxidative Activity via the TLR4 / MyD88 Signaling Pathway in LPS-Stimulated RAW264.7 Cells. Molecules. 24: 1-16.
  • Zou, Y.H., Zhao, L., Xu, Y.K., Bao, J.M., Liu, X., Zhang, J.S. (2018). Anti-inflammatory sesquiterpenoids from the Traditional Chinese Medicine Salvia plebeia: Regulates pro-inflammatory mediators through inhibition of NF-κB and Erk1/2 signaling pathways in LPS-induced Raw264.7 cells. Journal of Ethnopharmacology. 2(102): 95-106.
  • Choi, H.W., Shin, P.G., Lee, J.H. (2018). Anti-inflammatory effect of lovastatin is mediated via the modulation of NF-κB and inhibition of HDAC1 and the PI3K/Akt/mTOR pathway in RAW264.7 macrophages. International Journal of Molecular Medicine. 41(2): 1103-1109.
  • Hu, M., Li, X., Zhang, J., Yuan, Z., Fu, Y., Ma, X. (2019). GEN-27 exhibits anti-inflammatory effects by suppressing the activation of NLRP3 inflammasome and NF-êB pathway. Cell Biology International. 43(10): 1184-92.
  • Gao, Y., Lv, X., Yang, H., Peng, L., Ci, X. (2020). Isoliquiritigenin exerts antioxidative and antiinflammatory effects via activating the KEAP-1/Nrf2 pathway and inhibiting the NF-κB and NLRP3 pathways in carrageenan-induced pleurisy. Food & Function. 1-13.
  • Zhang, L., Fan, Y., Su, H. (2018. Chlorogenic acid methyl ester exerts strong anti-inflammatory effects via inhibiting the COX-2/NLRP3/NF-κB pathway. Food & Function. 9: 6155-6164.
  • Swanson, K.V., Deng, M., Ting, J.P.Y. (2019). The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nature Reviews Immunology. 19: 1-13.
  • Zhang, Q., Jiang, X., He, W. (2017). MCL Plays an Anti-Inflammatory Role in Mycobacterium tuberculosis -Induced Immune Response by Inhibiting NF-κB and NLRP3 Inflammasome Activation. Mediators of Inflammation. 29(4): 1-13.
  • Sharif, H., Wang, L., Wang, W.L., Magupalli, V.G., Andreeva, L., Qiao, Q. (2019). Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome. Nature. 20: 338-62.
  • Elliott, E.I., Miller, A.N., Banoth, B. (2018). Cutting Edge: Mitochondrial Assembly of the NLRP3 Inflammasome Complex Is Initiated at Priming. The Journal of Immunology. 200(9): 3047-3054.
  • Fulp, J., He, L., Toldo, S. (2018). Structural Insights of Benzenesulfonamide Analogues as NLRP3 Inflammasome Inhibitors: Design, Synthesis, and Biological Characterization. Journal of Medicinal Chemistry. 61(12): 5412-5423.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.