138
Views
7
CrossRef citations to date
0
Altmetric
Research Article

GC/MS Profiling and Biological Traits of Eucalyptus globulus L. Essential Oil Exposed to Solid Lipid Nanoparticle (SLN)

, , , &
Pages 863-878 | Received 05 May 2021, Accepted 26 Aug 2021, Published online: 01 Sep 2021

References

  • Dehghani-Samani, A., Madreseh-Ghahfarokhi, S., Dehghani-Samani, A. and Pirali, Y. (2019). In-vitro antigiardial activity and GC/MS analysis of Eucalyptus globulus and Zingiber officinalis essential oils against Giardia lamblia cysts in simulated condition to human’s body. Ann. Parasitol. 65(1): 129-138.
  • Limam, H., Jemaa, M.B., Tammar, S., Ksibi, N., Khammassi, S., Jallouli, S., Del Re, G. and Msaada, K. (2020). Variation in chemical profile of leaves essential oils from thirteen Tunisian Eucalyptus species and evaluation of their antioxidant and antibacterial properties. Ind. Crops Prod. 158, 112964.
  • Said, Z.B.-O.S., Haddadi-Guemghar, H., Boulekbache-Makhlouf, L., Rigou, P., Remini, H., Adjaoud, A., Khoudja, N.K. and Madani, K. (2016). Essential oils composition, antibacterial and antioxidant activities of hydrodistillated extract of Eucalyptus globulus fruits. Ind. Crops Prod. 89: 167-175.
  • Goldbeck, J.C., do Nascimento, J.E., Jacob, R.G., Fiorentini, Â.M. and da Silva, W.P. (2014). Bioactivity of essential oils from Eucalyptus globulus and Eucalyptus urograndis against planktonic cells and biofilms of Streptococcus mutans. Ind. Crops Prod. 60: 304-309.
  • Singab, A.-N., Ayoub, N., Al-Sayed, E., Martiskainen, O., Sinkkonen, J. and Pihlaja, K. (2011). Phenolic constituents of Eucalyptus camaldulensis Dehnh, with potential antioxidant and cytotoxic activities. Rec. Nat. Prod. 5(4): 271-280.
  • Döll-Boscardin, P.M., Sartoratto, A., Maia, S., de Noronha, B.H.L., Padilha de Paula, J., Nakashima, T., Farago, P.V. and Kanunfre, C.C. (2012). In vitro cytotoxic potential of essential oils of Eucalyptus benthamii and its related terpenes on tumor cell lines. Evid.Complement. Alternat. Med. 342652, https://doi.org/doi.org/10.1155/2012/342652
  • González-Burgos, E., Liaudanskas, M., Viškelis, J., •vikas, V., Janulis, V. and Gómez-Serranillos, M.P. (2018). Antioxidant activity, neuroprotective properties and bioactive constituents analysis of varying polarity extracts from Eucalyptus globulus leaves. J. Food Drug anal. 26(4): 1293-1302.
  • Luís, Â., Duarte, A., Gominho, J., Domingues, F. and Duarte, A.P. (2016). Chemical composition, antioxidant, antibacterial and anti-quorum sensing activities of Eucalyptus globulus and Eucalyptus radiata essential oils. Ind. Crops Prod. 79: 274-282.
  • Ashraf, A., Sarfraz, R.A., Mahmood, A. and ud Din, M. (2015). Chemical composition and in vitro antioxidant and antitumor activities of Eucalyptus camaldulensis Dehn. leaves. Ind. Crops Prod. 74: 241-248.
  • Bakkali, F., Averbeck, S., Averbeck, D. and Idaomar, M. (2008). Biological effects of essential oils-a review. Food Chem. Toxicol. 46(2): 446-475.
  • Sarma, N., Gogoi, R., Loying, R., Begum, T., Munda, S., Pandey, S. and Lal, M. (2021). Phytochemical composition and biological activities of essential oils extracted from leaves and flower parts of Corymbia citriodora (Hook.). J. Environ. Biol. 42: 552-562.
  • Shakeri, A., Akhtari, J., Soheili, V., Taghizadeh, S.F., Sahebkar, A., Shaddel, R. and Asili, J. (2017). Identification and biological activity of the volatile compounds of Glycyrrhiza triphylla Fisch. and CA Mey. Microb. Pathog. 109: 39-44.
  • Azizi, M. and Fuji, Y. (2005). Allelopathic effect of some medicinal plant substances on seed germination of Amaranthus retroflexus and Portulaca oleraceae. In I International Symposium on Improving the Performance of Supply Chains in the Transitional Economies. 699: 61-68.
  • Taghizadeh, S.F., Azizi, M., Asili, J., Madarshahi, F.S., Rakhshandeh, H. and Fujii, Y. (2021). Therapeutic peptides of Mucuna pruriens L.: Anti genotoxic molecules against human hepatocellular carcinoma and hepatitis C virus. Food Sci.Nutr. 9: 2908-2914.
  • El Omari, K., Hamze, M., Alwan, S., Osman, M., Jama, C. and Chihib, N.-E. (2019). In-vitro evaluation of the antibacterial activity of the essential oils of Micromeria barbata, Eucalyptus globulus and Juniperus excelsa against strains of Mycobacterium tuberculosis (including MDR), Mycobacterium kansasii and Mycobacterium gordonae. J. Infec. Pub. Health. 12: 615-618.
  • Juergens, U. (2014). Anti-inflammatory properties of the monoterpene 1.8-cineole: current evidence for co-medication in inflammatory airway diseases. Drug Res. 64(12): 638-646.
  • Gogoi, R., Begum, T., Sarma, N., Kumar Pandey, S. and Lal, M. (2021). Chemical composition of Callistemon citrinus (Curtis) Skeels aerial part essential oil and its pharmacological applications, neurodegenerative inhibitory, and genotoxic efficiencies. J. Food Biochem. e13767. https://doi.org/doi.org/10.1111/jfbc.13767
  • Salehi, B., Sharifi-Rad, J., Quispe, C., Llaique, H., Villalobos, M., Smeriglio, A., Trombetta, D., Ezzat, S.M., Salem, M.A. and Zayed, A. (2019). Insights into Eucalyptus genus chemical constituents, biological activities and health-promoting effects. Trends Food Sci. Technol. 91: 609-624.
  • Girardi, N.S., Passone, M.A., García, D., Nesci, A. and Etcheverry, M. (2018). Micro-encapsulation of Peumus boldus essential oil and its impact on peanut seed quality preservation. Ind. Crops Prod., 114: 108-114.
  • Jesser, E., Lorenzetti, A., Yeguerman, C., Murray, A., Domini, C. and Werdin-González, J. (2019). Ultrasound assisted formation of essential oil nanoemulsions: Emerging alternative for Culex pipiens pipiens Say (Diptera: Culicidae) and Plodia interpunctella Hübner (Lepidoptera: Pyralidae) management. Ultrason. Sonochem. 104832. https://doi.org/doi.org/10.1016/j.ultsonch.2019.104832 (Article in press).
  • Fazly Bazzaz, B., Khameneh, B., Namazi, N., Iranshahi, M., Davoodi, D. and Golmoham madzadeh, S. (2018). Solid lipid nanoparticles carrying Eugenia caryophyllata essential oil: the novel nanoparticulate systems with broad spectrum antimicrobial activity. Lett. Appl. Microbiol. 66(6): 506-513.
  • Kheirabadi, M., Azizi, M., Taghizadeh, S.F. and Fujii, Y. (2020). Recent Advances in Saffron Soil Remediation: Activated Carbon and Zeolites Effects on Allelopathic Potential. Plants. 9(12): 1714-1721.
  • Fardet, A. and Rock, E. (2020). Ultra-processed foods and food system sustainability: What are the links? Sustainability. 12(15), 6280-6288.
  • Maurya, A., Prasad, J., Das, S. and Dwivedy, A.K. (2021). Essential oils and their application in food safety. Frontiers in Sustainable Food Systems. 5: 133. https://doi.org/doi.org/10.3389/fsufs.2021.653420 (Article in press).
  • Fonseca, L.M., Radünz, M., dos Santos Hackbart, H.C., da Silva, F.T., Camargo, T.M., Bruni, G.P., Monks, J.L., da Rosa Zavareze, E. and Dias, A.R. (2020). Electrospun potato starch nanofibers for thyme essential oil encapsulation: antioxidant activity and thermal resistance. J. Sci. Food Agric. 100(11): 4263-4271.
  • Farhadi, F., Iranshahi, M., Taghizadeh, S.F. and Asili, J. (2020). Volatile sulfur compounds: The possible metabolite pattern to identify the sources and types of asafoetida by headspace GC/MS analysis. Ind. Crops Prod. 155: 112827. DOI: https://doi.org/10.1016/j.indcrop.2020.112827
  • Taghizadeh, S.F., Rezaee, R., Azizi, M., Hayes, A.W., Giesy, J.P. and Karimi, G. (2021). Pesticides, metals, and polycyclic aromatic hydrocarbons in date fruits: A probabilistic assessment of risk to health of Iranian consumers. J. Food Compos. Anal. 103815. DOI: https://doi.org/10.1016/j.jfca.2021. 103815
  • Fattahi, A., Shakeri, A., Tayarani Najaran, Z., Kharbach, M., Segers, K., Heyden, Y.V., Taghizadeh, S.F., Rahmani, H. and Asili, J. (2021). UPLC–PDA ESI–QTOF–MS/MS and GC MS analysis of Iranian Dracocephalum moldavica L. Food Sci. Nutr. doi: https://doi.org/10.1002/fsn3.2396 (Article in press).
  • Adams, R.P. (2007). Identification of essential oil components by gas chromatography/mass spectrometry (Vol. 456): Allured publishing corporation Carol Stream, IL.
  • Taghizadeh, S.F., Azizi, M., Rezaee, R., Giesy, J.P. and Karimi, G. (2021). Polycyclic aromatic hydrocarbons, pesticides, and metals in olive: analysis and probabilistic risk assessment. Environ. Sci. Pollut. Res. 28: 39723-39741
  • Farshchi, H.K., Azizi, M., Jaafari, M.R., Nemati, S.H. and Fotovat, A. (2018). Green synthesis of iron nanoparticles by Rosemary extract and cytotoxicity effect evaluation on cancer cell lines. Biocatal. Agri. Biotechnol. 16: 54-62.
  • Zhao, Y., Chang, Y.-X., Hu, X., Liu, C.-Y., Quan, L.-H. and Liao, Y.-H. (2017). Solid lipid nanoparticles for sustained pulmonary delivery of Yuxingcao essential oil: preparation, characterization and in vivo evaluation. Int. J. Pharm. 516(1-2): 364-371.
  • Rajkumar, V., Gunasekaran, C., Paul, C.A. and Dharmaraj, J. (2020). Development of encapsulated peppermint essential oil in chitosan nanoparticles: characterization and biological efficacy against stored-grain pest control. Pestic. Biochem. Physiol. 170, 104679.
  • Taghizadeh, S.F., Rezaee, R., Mehmandoust, M., Badibostan, H. and Karimi, G. (2020). Assessment of in vitro bioactivities of Pis v 1 (2S albumin) and Pis v 2.0101 (11S globulin) proteins derived from pistachio (Pistacia vera L.). J. Food Meas. Charact. 14(2): 1054-1063.
  • Gogoi, R., Sarma, N., Begum, T., Pandey, S.K. and Lal, M. (2020). North-East Indian Chromolaena odorata (L. King Robinson) Aerial Part Essential Oil Chemical Composition, Pharmacological Activities-Neurodegenerative Inhibitory and Toxicity Study. J. Essent. Oil Bear. Plants. 23(6): 1173-1191.
  • Andrews, J.M. (2001). Determination of minimum inhibitory concentrations. J. Antimicrob. Chem. 48: 5-16.
  • Radovanovic, B.C., Andelkovic, S., Radovanovic, A.B. and Andelkovic, M.Z. (2013). Antioxidant and antimicrobial activity of polyphenol extracts from wild berry fruits grown in south-east Serbia. Trop. J. Pharm. Res. 12(5): 813-819.
  • Taghizadeh, S.F., Rezaee, R., Mehmandoust, M., Madarshahi, F.S., Tsatsakis, A. and Karimi, G. (2019). Coronatine elicitation alters chemical composition and biological properties of cumin seed essential oil. Microb. Pathog. 130: 253-258.
  • Scorzoni, L., Sangalli-Leite, F., de Lacorte Singulani, J., Costa-Orlandi, C.B., Fusco-Almeida, A.M. and Mendes-Giannini, M.J.S. (2016). Searching new antifungals: The use of in vitro and in vivo methods for evaluation of natural compounds. J. Microbiol. Methods. 123: 68-78.
  • Taghizadeh, S.F., Rezaee, R., Badiebostan, H., Giesy, J.P. and Karimi, G. (2019). Occurrence of mycotoxins in rice consumed by Iranians: a probabilistic assessment of risk to health. Food Addit. Contam. 37(2): 342-354.
  • Shakeri, A., D’Urso, G., Taghizadeh, S.F., Piacente, S., Norouzi, S., Soheili, V., Asili, J. and Salarbashi, D. (2019). LC-ESI/LTQOrbitrap/MS/MS and GC/MS profiling of Stachys parviflora L. and evaluation of its biological activities. J. Pharm. Biomed. Anal. 168: 209-216.
  • Zieliñska, A., Martins-Gomes, C., Ferreira, N.R., Silva, A.M., Nowak, I. and Souto, E.B. (2018). Anti-inflammatory and anti-cancer activity of citral: Optimization of citral-loaded solid lipid nanoparticles (SLN) using experimental factorial design and LUMiSizer®. Int. J. Pharm. 553: 428-440.
  • Yoksan, R., Jirawutthiwongchai, J. and Arpo, K. (2010). Encapsulation of ascorbyl palmitate in chitosan nanoparticles by oil-in-water emulsion and ionic gelation processes. Colloids Surf. 76(1): 292-297.
  • de Campo, C., dos Santos, P.P., Costa, T.M.H., Paese, K., Guterres, S.S., de Oliveira Rios, A. and Flôres, S.H. (2017). Nanoencapsulation of chia seed oil with chia mucilage (Salvia hispanica L.) as wall material: Characterization and stability evaluation. Food Chem. 234: 1-9.
  • Das, S., Singh, V.K., Dwivedy, A.K., Chaudhari, A.K., Upadhyay, N., Singh, P., Sharma, S. and Dubey, N.K. (2019). Encapsulation in chitosan-based nanomatrix as an efficient green technology to boost the antimicrobial, antioxidant and in situ efficacy of Coriandrum sativum essential oil. Int. J. Biol. Macromol. 133: 294-305.
  • Hasheminejad, N., Khodaiyan, F. and Safari, M. (2019). Improving the antifungal activity of clove essential oil encapsulated by chitosan nanoparticles. Food Chemistry. 275: 113-122.
  • Herculano, E.D., de Paula, H.C., de Figueiredo, E.A., Dias, F.G. and Pereira, V.d.A. (2015). Physicochemical and antimicrobial properties of nanoencapsulated Eucalyptus staigeriana essential oil. LWT-Food Sci.Technol. 61(2): 484-491.
  • Zaman, K., Ali, M., Kapoor, R., Siddiqui, A.W. and Mir, S.R. (2004). Essential Oil Composition of Flowers of Eucalyptus citriodora Hook. J. Essent. Oil-Bear. Plants. 7(2): 160-164.
  • Manguro, L.O., Opiyo, S.A., Asefa, A., Dagne, E. and Muchori, P.W. (2010). Chemical constituents of essential oils from three Eucalyptus species acclimatized in Ethiopia and Kenya. J. Essent. Oil-Bear. Plants. 13(5): 561-567.
  • Salehi, B., Sharifi-Rad, J., Quispe, C., Llaique, H., Villalobos, M., Smeriglio, A., Trombetta, D., Ezzat, S.M., Salem, M.A. and Zayed, A. (2019). Insights into Eucalyptus genus chemical constituents, biological activities and health-promoting effects. Trends Food Sci Technol. 91: 609-624.
  • Ali, H., Al-Khalifa, A.R., Aouf, A., Boukhebti, H. and Farouk, A. (2020). Effect of nano-encapsulation on volatile constituents, and antioxidant and anticancer activities of Algerian Origanum glandulosum Desf. Essential oil. Sci. Rep., 10(1): 1-9.
  • Ito, H., Koreishi, M., Tokuda, H., Nishino, H. and Yoshida, T. (2000). Cypellocarpins A” C, phenol glycosides esterified with oleuropeic acid, from Eucalyptus cypellocarpa. J. Nat. Prod. 63(9): 1253-1257.
  • Ashour, H.M. (2008). Antibacterial, antifungal, and anticancer activities of volatile oils and extracts from stems, leaves, and flowers of Eucalyptus sideroxylon and Eucalyptus torquata. Cancer Biol. Ther. 7(3): 399-403.
  • Al-Fatimi, M., Friedrich, U. and Jenett-Siems, K. (2005). Cytotoxicity of plants used in traditional medicine in Yemen. Fitoterapia. 76: 355-358.
  • Gupta, S., Bhagat, M., Sudan, R., Dogra, S. and Jamwal, R. (2015). Comparative chemo-profiling and biological potential of three Eucalyptus species growing in Jammu and Kashmir. J. Essent. Oil-Bear. Plants. 18(2): 409-415.
  • Bardaweel, S., Hudaib, M. and Tawaha, K. (2014). Evaluation of antibacterial, antifungal, and anticancer activities of essential oils from six species of Eucalyptus. J. Essent. Oil-Bear. Plants. 17(6): 1165-1174.
  • Montenegro, L., Pasquinucci, L., Zappalà, A., Chiechio, S., Turnaturi, R. and Parenti, C. (2017). Rosemary essential oil-loaded lipid nanoparticles: In vivo topical activity from gel vehicles. Pharmaceutics. 9(4): 48-50.
  • Saporito, F., Sandri, G., Bonferoni, M.C., Rossi, S., Boselli, C., Cornaglia, A.I., Mannucci, B., Grisoli, P., Vigani, B. and Ferrari, F. (2018). Essential oil-loaded lipid nanoparticles for wound healing. Int. J. Nanomedicine. 13: 175-186.
  • Nasseri, M., Golmohammadzadeh, S., Arouiee, H., Jaafari, M.R. and Neamati, H. (2016). Antifungal activity of Zataria multiflora essential oil-loaded solid lipid nanoparticles in-vitro condition. Iran. J. Basic Med. Sci. 19(11): 1231-1237.
  • Woranuch, S. and Yoksan, R. (2013). Eugenol-loaded chitosan nanoparticles: I. Thermal stability improvement of eugenol through encapsulation. Carbohydr. Polym. 96(2): 578-585.
  • Kumar, A., Singh, P.P. and Prakash, B. (2020). Unravelling the antifungal and anti-aflatoxin B1 mechanism of chitosan nanocomposite incorporated with Foeniculum vulgare essential oil. Carbohydr. Polym. 236, 116050.
  • Li, K.-K., Yin, S.-W., Yang, X.-Q., Tang, C.-H. and Wei, Z.-H. (2012). Fabrication and characterization of novel antimicrobial films derived from thymol-loaded zein-sodium caseinate (SC) nanoparticles. J. Agric. Food Chem. 60(46): 11592-11600.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.