292
Views
3
CrossRef citations to date
0
Altmetric
Review

Optimization of Extraction of Essential Oils using Response Surface Methodology: A Review

, , , , &
Pages 937-982 | Received 20 Jun 2021, Accepted 01 Sep 2021, Published online: 28 Oct 2021

References

  • Amorati, R., Foti, M.C. and Valgimigli, L. (2013). Antioxidant activity of essential oils. J. Agric. Food Chem. 61(46): 10835-10847.
  • Santiago, J.A., Cardoso, M.D.G., Batista, L.R., De Castro, E.M., Teixeira, M.L. and Pires, M.F. (2016). Essential oil from Chenopodium ambrosioides L.: secretory structures, antibacterial and antioxidant activities. Acta Sci. Biol. Sci. 38(2): 139-147.
  • Guimarães, R., Sousa, M.J. and Ferreira, I.C.F.R. (2010). Contribution of essential oils and phenolics to the antioxidant properties of aromatic plants. Ind. Crops Prod. 32: 152-156.
  • Tongnuanchan, P. and Benjakul, S. (2014). Essential oils: extraction, bioactivities, and their uses for food preservation. J. Food Sci. 79(7): 1231-1249.
  • Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods - A Review. Int. J. Food Microbiol. 94(3): 223-253.
  • Roohinejad, S., Koubaa, M., Barba, F.J., Leong, S.Y., Khelfa, A., Greiner, R. and Chemat, F. (2017). Extraction methods of essential oils from herbs and spices. in essential oils in food processing: chemistry, safety and applications. Bagher H.S.M., Mousavi K.A., De Souza S.A. (eds.). Wiley Blackwell.
  • Mahanta, B.P., Bora, P.K., Kemprai, P., Borah, G., Lal, M. and Haldar, S. (2021). Thermolabile essential oils, aromas and flavours: degradation pathways, effect of thermal processing and alteration of sensory quality. Food Res. Int. 145:110404.
  • Asbahani, A.E, Miladi, K., Badri, W., Sala, M., Addi, E.H.A., Casabianca, H., Mousadik, A.E, Hartmann, D., Jilale, A., Renaud, F.N.R. and Elaissari, A. (2015). Essential oils: from extraction to encapsulation. Int. J. Pharm. 483(1-2): 220-243.
  • Bezerra, M.A., Santelli, R.E., Oliveira, E.P., Villar, L.S. and Escaleira, L.A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta. 76(5): 965-977.
  • Montgomery, D.C. (2006). Diseño y análisis de experimentos, Limusa: México, México.
  • Tan, Q.L.P., Kieu, X.N.T. and Hong, X.N.T. (2012). Application of response surface methodology (RSM) in condition optimization for essential oil production from Citrus latifolia. Emir. J. Food Agric. 24(1): 25-30.
  • Banga, J.R., Balsa-Canto, E., Moles, C.G. and Alonso, A.A. (2003). Improving food processing using modern optimization methods. Trends Food Sci. Technol. 14(4): 131-144.
  • Bas, D. and Boyaci, S.H. (2007). Modeling and optimization I: Usability of response surface methodology. J. Food Eng. 78(3): 836-845
  • Aydar, A.V. (2019). Statistical methods in optimization of food materials. EIJST. 8(3): 33-40.
  • Yousefi, M., Rahimi-Nasrabadi, M., Pourmortazavi, S.M., Wysokowski, M., Jesionowski, T., Ehrlich, H. and Mirsadeghi, S. (2019). Supercritical fluid extraction of essential oils. Trends Anal. Chem. 118: 182-193.
  • Ni, Z.J., Wang, X., Shen, Y., Thakur, K., Han, J., Zhang, J.G., Hu, F. and Wei, Z.J. (2021). Recent updates on the chemistry, bioactivities, mode of action, and industrial applications of plant essential oils. Trends Food Sci. Technol. 110: 78-89.
  • Cardoso-Ugarte, G.A. and Sosa-Morales, M.E. (2021). Essential oils from herbs and spices as natural antioxidants: diversity of promising food applications in the past decade. Food Rev. Int. 1-31. https://doi.org/https://doi.org/10.1080/87559129.2021.1872084 .
  • Chen, K., Zhang, M., Bhandari, B. and Mujumdar, A.S. (2021). Edible flower essential oils: A review of chemical compositions, bioactivities, safety and applications in food preservation. Food Res. Int. 139: 109809.
  • Sharma, S., Barkauskaite, S., Jaiswal, A.K. and Jaiswal, S. (2021). Essential oils as additives in active food packaging. Food Chem. 343: 128403.
  • Varghese, S.A., Siengchin, S. and Parameswaranpillai, J. (2020). Essential oils as antimicrobial agents in biopolymer-based food packaging - A comprehensive review. Food Biosci. 38: 100785.
  • Falleh, H., Ben Jemaa, M., Saada, M. and Ksouri, R. (2020). Essential oils: A promising ecofriendly food preservative. Food Chem. 330: 127268.
  • Jugreet, B.S., Suroowan, S., Rengasamy, R.K. and Mahomoodally, M.F. (2020). Chemistry, bioactivities, mode of action and industrial applications of essential oils. Trends Food Sci. Technol. 101: 89-105.
  • Dean, A., Voss, D. and Draguljic, D. (2017). Design and analysis of experiments. 2nd. Springer: New York.
  • Myers, R.H., Montgomery, D.C. and Anderson-Cook, C.M. (2016). Response surface methodology: process and product optimization using designed experiments. 4th. Wiley. New Jersey.
  • Yi Peng, T., Mashitah, M.D. and Muhammad, T. (2012). Optimisation and kinetics studies on the extraction of essential oil from Zingiber cassumunar. J. Phys. Sci. 23(1): 65-82.
  • Cui, H., Pan, H.W., Wang, P.H., Yang, X.D., Zhai, W.C., Dong, Y. and Zhou, H.L. (2018). Essential oils from Carex meyeriana Kunth: optimization of hydrodistillation extraction by response surface methodology and evaluation of its antioxidant and antimicrobial activities. Ind. Crops Prod. 124: 669-676.
  • Yingngam, B. and Brantner, A.H. (2015). Factorial design of essential oil extraction from Fagraea fragrans Roxb. flowers and evaluation of its biological activities for perfumery and cosmetic applications. Int. J. Cosmet. Sci. 37(3): 272-281.
  • Kallel, I., Hadrich, B., Gargouri, B., Chaabane, A., Lassoued, S., Gdoura, R., Bayoudh, A. and Ben Messaoud, E. (2019). Optimization of cinnamon (Cinnamomum zeylanicum Blume) essential oil extraction: evaluation of antioxidant and antiproliferative effects. Evid. Based Complement. Alternat. Med. 2019. 1-11.
  • Dao, T.P., Quyen, N.T.C., Tran, T.H., Thinh, P.V., Long, P.Q., Toan, T.Q., Nguyen, N.H., Hoang Vo, D.M., Le, X.T., Yen Trung, L.N., Nguyen, T.T., Yen Nhi, T.T., Truc, T.T. and Van Muoi, N. (2019). Optimization of operating conditions of essential oil extraction of vietnamese pomelo (Citrus grandis L.) peels by hydrodistillation process. Asian J. Chem. 32(2): 237-243
  • Tran, T.H., Quyen Ngo, T.C., Ngo, H.D., Thuan Anh, N.H., Thuy An, T.N., Quan, P.M. and Toan, T.Q. (2020). Optimization of essential oil extraction process of white pepper (Piper nigrum L.) harvested in Phu Quoc Island, Kien Giang Province, Vietnam. Chem. Asian J. 32(11): 2707–2712
  • Li, L., Ji, J., Kang, X., Dai, P. and Fu, C. (2014). Optimization of the extraction of essential oils from Areca catechu L. flowers using response surface methodology. BioTechnol. Ind. J. 10(1): 1-4.
  • Sadjia, B., Naima, S. and Chahrazed, B. (2012). Extraction of thyme (Thymus pallecens de Noé) essential oil by steam-distillation, steam-diffusion and hydro-distillation processes: optimization of operating conditions and antioxidant activity. J. Essent. Oil Bear. Plants. 15(2): 336-347.
  • Li, L., Ji, J.B., Kang, X.N., Dai, P. and Fu, C.X. (2014). Optimization of crude extracts from Areca catechu L. flower using response surface methodology. Adv. Mat. Res. 962: 1271-1274.
  • Nasshorudin, D., Ahmad, M.S., Mamat, A.S. and Rosli, S. (2015). Optimization study of Chromalaena odorata essential oil extracted using solventless extraction technique. AIP Conference Proceedings, 1660.
  • Rodríguez-Solana, R., Salgado, J.M., Domínguez, J.M. and Cortés-Diéguez, S. (2014). Characterization of fennel extracts and quantification of estragole: optimization and comparison of accelerated solvent extraction and soxhlet techniques. Ind. Crops Prod. 52: 528-536.
  • Yang, G., Sun, Q., Hu, Z., Liu, H., Zhou, T. and Fan, G. (2015). Optimization of an accelerated solvent extraction dispersive liquid-liquid microextraction method for the separation and determination of essential oil from Ligusticum chuanxiong Hort by gas chromatography with mass spectrometry. J. Sep. Sci. 38(20): 3588-3598.
  • Mohd-Salleh, M.R., Ghafar, F. and Hadi, N.N. (2018). Optimization of Nepeta cataria essential oil extraction yield by ultrasonic-soxhlet extraction method using response surface methodology. IOP Conference Series: Materials Science and Engineering, 440.
  • Zhang, X., Gao, H., Zhang, L., Liu, D. and Ye, X. (2012). Extraction of essential oil from discarded tobacco leaves by solvent extraction and steam distillation, and identification of its chemical composition. Ind. Crops Prod. 39(1): 162-169.
  • Kuok-Loong, N., Wahida, P. and Chong, C.H. (2014). Optimisation of extraction of thymol from Plectranthus amboinicus leaves using response surface methodology. J. Eng. Sci. Technol. No. Special Issue August: 79-88.
  • Yi, F., Jin, R., Sun, J., Ma, B. and Bao, X. (2018). Evaluation of mechanical-pressed essential oil from nanfeng mandarin (Citrus reticulata Blanco cv. Kinokuni) as a food preservative based on antimicrobial and antioxidant activities. LWT-Food Sci. Technol. 95: 346-353.
  • Shao, Q., Deng, Y., Liu, H., Zhang, A., Huang, Y., Xu, G. and Li, M. (2014). Essential oils extraction from Anoectochilus roxburghii using supercritical carbon dioxide and their antioxidant activity. Ind. Crops Prod. 60: 104-112.
  • Haloui, I. and Meniai, A.H. (2017). Supercritical CO2 extraction of essential oil from Algerian argan (Argania spinosa L.) seeds and yield optimization. Int. J. Hydrog. Energy. 42(17): 12912–12919.
  • Li, Y., Xia, L., Vazquez, J.F.T. and Song, S. (2017). Optimization of supercritical CO2 extraction of essential oil from Artemisia annua L. by means of response surface methodology. J. Essent. Oil Bear. Plants. 20(2): 314-327.
  • Masghati, S. and Ghoreishi, S.M. (2018). Supercritical CO2 extraction of cinnamaldehyde and eugenol from cinnamon bark: optimization of operating conditions via response surface methodology. J. Supercrit. Fluids. 140: 62-71.
  • Sodeifian, G., Saadati Ardestani, N., Sajadian, S.A. and Ghorbandoost, S. (2016). Application of supercritical carbon dioxide to extract essential oil from Cleome coluteoides Boiss: experimental, response surface and grey wolf optimization methodology. J. Supercrit. Fluids. 114: 55-63.
  • Zekovic, Z., Pavlic, B., Cvetanovic, A. and Ðurovic, S. (2016). Supercritical fluid extraction of coriander seeds: process optimization, chemical profile and antioxidant activity of lipid extracts. Ind. Crops Prod. 94: 353-362.
  • Priyanka and Khanam, S. (2018). Influence of operating parameters on supercritical fluid extraction of essential oil from turmeric root. J. Clean. Prod. 188: 816-824.
  • Wu, H., Li, J., Jia, Y., Xiao, Z., Li, P., Xie, Y., Zhang, A., Liu, R., Ren, Z., Zhao, M., Zeng, C. and Li, C. (2019). Essential oil extracted from Cymbopogon citronella leaves by supercritical carbon dioxide: antioxidant and antimicrobial activities. J. Anal. Methods Chem. 2019: article ID 8192439.
  • Manaf, M. A., Mustapa, A.N. and Mustapa, K. (2013). Supercritical fluid extraction of citronella oil from Cymbopogon nardus and its optimization. IEEE business engineering and industrial applications colloquium (BEIAC): 73-78.
  • Wang, H., Liu, Y., Wei, S. and Yan, Z. (2012). Application of response surface methodology to optimise supercritical carbon dioxide extraction of essential oil from Cyperus rotundus Linn. Food Chem. 132(1): 582-587.
  • Ara, K.M., Jowkarderis, M. and Raofie, F. (2015). Optimization of supercritical fluid extraction of essential oils and fatty acids from flixweed (Descurainia sophia L.) seed using response surface methodology and central composite design. J. Food Sci. Technol. 52(7): 4450-4458.
  • Sodeifian, G., Sajadian, S.A. and Saadati, A.N. (2016). Extraction of Dracocephalum kotschyi Boiss using supercritical carbon dioxide: experimental and optimization. J. Supercrit. Fluids. 107: 137-144.
  • Sodeifian, G. and Sajadian, S.A. (2017). Investigation of essential oil extraction and antioxidant activity of Echinophora platyloba DC. using supercritical carbon dioxide. J. Supercrit. Fluids. 121: 52-62.
  • Sodeifian, G., Sajadian, S.A. and Saadati A.N. (2017). Experimental optimization and mathematical modeling of the supercritical fluid extraction of essential oil from Eryngium billardieri: application of simulated annealing (SA) algorithm. J. Supercrit. Fluids. 127: 146-157.
  • Marzlan, A.A., Muhialdin, B.J., Zainal A.N.H., Mohammed, N.K., Abadl, M.M.T., Mohd R.B.H. and Meor H.A.S. (2020). Optimized supercritical CO2 extraction conditions on yield and quality of torch ginger (Etlingera elatior (Jack) R.M. Smith) inflorescence essential oil. Ind. Crops Prod. 154: 112581
  • Sodeifian, G., Sajadian, S.A. and Saadati A.N. (2016). Evaluation of the response surface and hybrid artificial neural network-genetic algorithm methodologies to determine extraction yield of Ferulago angulata through supercritical fluid. J. Taiwan Inst. Chem. Eng. 60: 165-173.
  • Nie, S.P., Li, J.E., Yang, C., Qiu, Z.H. and Xie, M.Y. (2010). Optimization of supercritical fluid extraction of essential oil from Herba moslae by response surface methodology and its chemical composition analysis. Food Sci. Technol. Res. 16(3): 185-190.
  • Rassem, H.H., Nour, A.H., Yunus, R.M., Zaki, Y.H. and Abdlrhman, H.S.M. (2019). Yield optimization and supercritical CO2 extraction of essential oil from jasmine flower. Indones. J. Chem. 19(2): 479-485.
  • Sodeifian, G., Sajadian, S.A. and Saadati, A.N. (2016). Optimization of essential oil extraction from Launaea acanthodes Boiss: utilization of supercritical carbon dioxide and cosolvent. J. Supercrit. Fluids. 116: 46-56.
  • Danh, L.T., Triet, N.D.A., Han, L.T.N., Zhao, J., Mammucari, R. and Foster, N. (2012). Antioxidant activity, yield and chemical composition of lavender essential oil extracted by supercritical CO2. J. Supercrit. Fluids. 70: 27-34.
  • Kamali, H., Aminimoghadamfarouj, N., Golmakani, E. and Nematollahi, A. (2015). The optimization of essential oils supercritical CO2 extraction from Lavandula hybrida through staticdynamic steps procedure and semi-continuous technique using response surface method. Pharmacognosy Res. 7(1): 57-65.
  • Khajeh, M. (2012). Response surface modeling of essential oil components from Mentha piperita by supercritical fluid extraction: Box-Behnken experimental design. J. Essent. Oil Bear. Plants. 15(5): 731-738.
  • Zermane, A., Larkeche, O., Meniai, A.H., Crampon, C. and Badens, E. (2014). Optimization of essential oil supercritical extraction from Algerian Myrtus communis L. leaves using response surface methodology. J. Supercrit. Fluids. 85: 89-94.
  • Ghasemi, E., Raofie, F. and Najafi, N.M. (2011). Application of response surface methodology and central composite design for the optimisation of supercritical fluid extraction of essential oils from Myrtus Communis L. leaves. Food Chem. 126(3): 1449-1453.
  • Utomo, E.P., Marina, M., Warsito, W. and Agustian, E. (2018). Optimization of supercritical CO2 extraction process to improve the quality of patchouli oil by response surface methodology approach. Indones. J. Chem. 18(2) 235-241.
  • Bagheri, H., Abdul-Manap, M.Y.B. and Solati, Z. (2014). Antioxidant activity of Piper nigrum L. essential oil extracted by supercritical CO2 extraction and hydro-distillation. Talanta, 121. 220-228.
  • Bagheri, H., Abdul-Manap, M.Y.B. and Solati, Z. (2014). Response surface methodology applied to supercritical carbon dioxide extraction of Piper nigrum L. essential oil. LWT-Food Sci. Technol. 57(1): 149-155.
  • Ara, K.M. and Raofie, F. (2016). Application of response surface methodology for the optimization of supercritical fluid extraction of essential oil from pomegranate (Punica granatum L.) peel. J. Food Sci. Technol. 53(7): 3113-3121.
  • Zermane, A., Larkeche, O., Meniai, A.H., Crampon, C. and Badens, E. (2016). Optimization of Algerian rosemary essential oil extraction yield by supercritical CO2 using response surface methodology. C. R. Chimie. 19(4): 538-543.
  • Akalin, M.K., Tekin, K., Akyüz, M. and Karagöz, S. (2015). Sage oil extraction and optimization by response surface methodology. Ind. Crops Prod. 76: 829-835.
  • Khajeh, M. (2011). Optimization of process variables for essential oil components from Satureja hortensis by supercritical fluid extraction using Box-Behnken experimental design. J. Supercrit. Fluids. 55(3): 944-948.
  • Sodeifian, G., Azizi, J. and Ghoreishi, S.M. (2014). Response surface optimization of Smyrnium cordifolium Boiss (SCB) oil extraction via supercritical carbon dioxide. J. Supercrit. Fluids. 95: 1-7.
  • Xiong, K. and Chen, Y. (2020). Supercritical carbon dioxide extraction of essential oil from tangerine peel: Experimental optimization and kinetics modelling. Chem. Eng. Res. Des. 164: 412-423
  • Ghoreishi, S.M., Bataghva, E. and Dadkhah, A.A. (2012). Response surface optimization of essential oil and diosgenin extraction from Tribulus terrestris via supercritical fluid technology. Chem. Eng. Technol. 35(1): 133-141.
  • Danh, L.T., Mammucari, R., Truong, P. and Foster, N. (2009). Response surface method applied to supercritical carbon dioxide extraction of Vetiveria zizanioides essential oil. Chem. Eng. J. 155(3): 617-626.
  • Danh, L.T., Truong, P., Mammucari, R. and Foster, N. (2010). Extraction of vetiver essential oil by ethanol-modified supercritical carbon dioxide. Chem. Eng. J. 165(1): 26-34.
  • Hong, L., Xiaole, L., Qiaonian, W., Renjie, Z. and Jing, W. (2016). Extraction and purification of ginger essential oil by supercritical carbon dioxide combined with macroporous resin method. Curr. Top Nutraceut. R. 14(1): 59-67.
  • Hong, L., Renjie, Z., Qiaonian, W., Xiaole, L. and Jing, W. (2016). Optimization of supercritical carbon dioxide extraction of ginger essential oil by response surface method. Agric. Sci. Technol. 17(9): 2178-2182.
  • Mottahedin, P., Haghighi Asl, A. and Khajenoori, M. (2017). Extraction of curcumin and essential oil from Curcuma longa L. by subcritical water via response surface methodology. J. Food Process. Preserv. 41(4): e13095.
  • Eikani, M.H., Golmohammad, F., Sadr, Z.B., Amoli, H.S. and Mirza, M. (2013). Optimization of superheated water extraction of essential oils from cinnamon bark using response surface methodology. J. Essent. Oil Bear. Plants. 16(6): 740-748.
  • Khajenoori, M., Asl, A.H. and Eikani, M.H. (2015). Optimization of subcritical water extraction of Pimpinella anisum seeds. J. Essent. Oil Bear. Plants. 18(6): 1310-1320.
  • Khajenoori, M., Asl, A.H. and Eikani, M.H. (2015). Subcritical water extraction of essential oils from Trachyspermum ammi seeds. J. Essent. Oil Bear. Plants. 18(5): 1165-1173.
  • Boukroufa, M., Boutekedjiret, C., Petigny, L., Rakotomanomana, N. and Chemat, F. (2015). Bio-refinery of orange peels waste: a new concept based on integrated green and solvent free extraction processes using ultrasound and microwave techniques to obtain essential oil, polyphenols and pectin. Ultrason. Sonochem. 24: 72-79.
  • Balti, M.A., Hadrich, B. and Kriaa, K. (2018). Lab-scale extraction of essential oils from Tunisian lemongrass (Cymbopogon flexuosus). Chem. Eng. Process. 124: 164-173.
  • Solanki, K.P., Desai, M.A. and Parikh, J.K. (2018). Sono hydrodistillation for isolation of citronella oil: a symbiotic effect of sonication and hydrodistillation towards energy efficiency and environment friendliness. Ultrason. Sonochem. 49: 145-153.
  • Yu, S., Xie, X., Li, S. and Li, W. (2013). Optimization of ultrasonic enhanced salt-containing hydrodistillation by response surface methodology. Chem. Eng. Technol. 36(5): 801-809.
  • Rashed, M.M.A., Tong, Q., Nagi, A., Li, J.P., Khan, N.U., Chen, L., Rotail, A. and Bakry, A.M. (2017). Isolation of essential oil from Lavandula angustifolia by using ultrasonic-microwave assisted method preceded by enzymolysis treatment, and assessment of its biological activities. Ind. Crops Prod. 100: 236-245.
  • Chen, C.K., Fan, Z.G., Zhao, F.X., Wu, Y.Y. and Shi, R.C. (2020). Optimization and GC-MS analysis of extracting pepper leaves essential oil by ultrasonic assisted distillation based on deep eutectic solvents. Sci. Techn. Food Ind. 41(20): 135-141
  • Belhachat, D., Mekimene, L., Belhachat, M., Ferradji, A. and Aid, F. (2018). Application of response surface methodology to optimize the extraction of essential oil from ripe berries of Pistacia lentiscus using ultrasonic pretreatment. J. Appl. Res. Med. Aromat. Plants. 9: 132-140.
  • Tekin, K., Akalin, M.K. and Seker, M.G. (2015). Ultrasound bath-assisted extraction of essential oils from clove using central composite design. Ind. Crops Prod. 77: 954-960.
  • Alirezapour, N.A., Haghighi Asl, A. and Khajenoori, M. (2020). Ultrasound-assisted extraction of thymol from Zataria multiflora Boiss.: Optimization by response surface methodology and comparison with conventional soxhlet extraction. Bulg. Chem. Commun. 52 (4): 419-427.
  • Cui, Q., Wang, L.T., Liu, J.Z., Wang, H.M., Guo, N., Gu, C.B. and Fu, Y.J. (2017). Rapid extraction of Amomum tsao-ko essential oil and determination of its chemical composition, antioxidant and antimicrobial activities. J. Chromatogr. B. 1061-1062: 364-371.
  • Chen, F., Jia, J., Zhang, Q., Gu, H. and Yang, L. (2017). A modified approach for isolation of essential oil from fruit of Amorpha fruticosa Linn using microwave-assisted hydrodistillation concatenated liquid-liquid extraction. J. Chromatogr. A. 1524: 254-265.
  • Qi, X.L., Li, T.T., Wei, Z.F., Guo, N., Luo, M., Wang, W., Zu, Y.G., Fu, Y.J. and Peng, X. (2014). Solvent-free microwave extraction of essential oil from pigeon pea leaves [Cajanus cajan (L.) Millsp.] and evaluation of its antimicrobial activity. Ind. Crops Prod. 58: 322-328.
  • Tran, Q.T., Vu Thi, T.L., Do, T.L., Pham Thi, H.M., Hoang Thi, B., Chu, Q.T., Lai Phuong, P.T., Do, H.N., Hoang Than, H.T., Ta Thi, T.T., Luu, V.H., Mai Duong, P.T. and Thu Phung, H.T. (2020). Optimization of microwave-assisted extraction process of Callicarpa candicans (Burm. f.) Hochr essential oil and its inhibitory properties against some bacteria and cancer cell lines. Processes. 8(2): 173.
  • Fiorini, D., Scortichini, S., Bonacucina, G., Greco, N.G., Mazzara, E., Petrelli, R., Torresi, J., Maggi, F. and Cespi, M. (2020). Cannabidiol-enriched hemp essential oil obtained by an optimized microwave-assisted extraction using a central composite design. Ind. Crops Prod. 154: 112688.
  • Chen, F., Du, X., Zu, Y., Yang, L. and Wang, F. (2016). Microwave-assisted method for distillation and dual extraction in obtaining essential oil, proanthocyanidins and polysaccharides by one-pot process from Cinnamomi cortex. Sep. Purif. Technol. 164: 1-11.
  • Liu, Z., Deng, B., Li, S. and Zou, Z. (2018). Optimization of solvent-free microwave assisted extraction of essential oil from Cinnamomum camphora leaves. Ind. Crops Prod. 124: 353-362.
  • Shang, A., Gan, R.Y., Zhang, J.R., Xu, X.Y., Luo, M., Liu, H.Y. and Li, H.B. (2020). Optimization and characterization of microwave-assisted hydro-distillation extraction of essential oils from Cinnamomum camphora leaf and recovery of polyphenols from extract fluid. Molecules. 25(14): 3213.
  • Zhao, C., Yang, X., Tian, H. and Yang, L. (2020). An improved method to obtain essential oil, flavonols and proanthocyanidins from fresh Cinnamomum japonicum Sieb. leaves using solventfree microwave-assisted distillation followed by homogenate extraction. Arab. J. Chem. 13(1): 2041-2052.
  • Chen, F., Xu, M., Yang, X., Liu, J., Xiao, Y. and Yang, L. (2018). An improved approach for the isolation of essential oil from the leaves of Cinnamomum longepaniculatum using microwaveassisted hydrodistillation concatenated double-column liquid-liquid extraction. Sep. Purif. Technol. 195: 110-120.
  • Dao, T.P., Tran, T.H., Nguyen, P.T.N., Tran, T.K.N., Ngo, T.C.Q., Nhan, L.T.H., Anh, T.T., Toan, T.Q., Quan, P.M. and Linh, H.T.K. (2020). Optimization of microwave assisted hydrodistillation of essential oil from lemon (Citrus aurantifolia) leaves: response surface methodology studies. Iop Conf. Ser. Mater. Sci. Eng. 736: 022038.
  • Chen, Q., Hu, Z., Yao, F.Y.D. and Liang, H. (2016). Study of two-stage microwave extraction of essential oil and pectin from pomelo peels. LWT-Food Sci. Technol. 66: 538-545.
  • Dao, T.P., Tran, T.H., Nguyen, D.T., Nguyen, D.C., Nguyen, D.H., Le, N.T.H., Sy, D.T., Huong, N.T.T. and Minh, B.L. (2019). Application of response surface methodology for the optimization of essential oils from pomelo [Citrus grandis (L.) Osbeck] leaves using microwaveassisted hydrodistillation method. Asian J. Chem. 31(8): 1639-1642.
  • Hien, T.T., Nhan, N.P.T., Trinh, N.D., Ho, V.T.T. and Bach, L.G. (2018). Optimizing the pomelo oils extraction process by microwave-assisted hydro-distillation using soft computing approaches. Solid State Phenom. 279: 217-221.
  • Li, X.J., Wang, W., Luo, M., Li, C.Y., Zu, Y.G., Mu, P.S. and Fu, Y.J. (2012). Solvent-free microwave extraction of essential oil from Dryopteris fragrans and evaluation of antioxidant activity. Food Chem. 133(2): 437-444.
  • Mollaei, S., Sedighi, F., Habibi, B., Hazrati, S. and Asgharian, P. (2019). Extraction of essential oils of Ferulago angulata with microwave-assisted hydrodistillation. Ind. Crops Prod. 137: 43-51.
  • Jiao, J., Gai, Q.Y., Fu, Y.J., Zu, Y.G., Luo, M., Zhao, C.J. and Li, C.Y. (2013). Microwaveassisted ionic liquids treatment followed by hydro-distillation for the efficient isolation of essential oil from Fructus forsythiae seed. Sep. Purif. Technol. 107: 228-237.
  • Liu, X., Jing, X. and Li, G. (2019). A process to acquire essential oil by distillation concatenated liquid-liquid extraction and flavonoids by solid-liquid extraction simultaneously from Helichrysum arenarium (L.) Moench inflorescences under ionic liquid-microwave mediated. Sep. Purif. Technol. 209: 164-174.
  • Franco-Vega, A., Ramírez-Corona, N., López-Malo, A. and Palou, E. (2019). Studying microwave assisted extraction of Laurus nobilis essential oil: static and dynamic modeling. J. Food Eng. 247: 1-8.
  • Liu, B., Fu, J., Zhu, Y. and Chen, P. (2018). Optimization of microwave-assisted extraction of essential oil from lavender using response surface methodology. J. Oleo Sci. 67(10): 1327-1337.
  • Chen, F., Zu, Y. and Yang, L. (2015). A novel approach for isolation of essential oil from fresh leaves of Magnolia sieboldii using microwave-assisted simultaneous distillation and extraction. Sep. Purif. Technol. 154: 271-280.
  • Abedi, A.S., Rismanchi, M., Shahdoostkhany, M., Mohammadi, A. and Mortazavian, A.M. (2017). Microwave-assisted extraction of Nigella sativa L. essential oil and evaluation of its antioxidant activity. J. Food Sci. Technol. 54(12): 3779-3790.
  • Tran, T.H., Nguyen, H.H.H., Nguyen, D.C., Nguyen, T.Q., Tan, H., Nhan, L.T.H., Nguyen, D.H., Tran, L.D., Do, S.T. and Nguyen, T.D. (2018). Optimization of microwave-assisted extraction of essential oil from Vietnamese basil (Ocimum basilicum L.) using response surface methodology. Processes. 6(11): 206.
  • Dao, T.P., Nguyen, D.C., Tran, T.H., Van Thinh, P., Hieu, V.Q., Vo Nguyen, D.V., Nguyen, T.D. and Bach, L.G. (2019). Modeling and optimization of the orange leaves oil extraction process by microwave-assisted hydro-distillation: the response surface method based on the central composite approach (RSM-CCD Model). Rasayan J. Chem. 12(2): 666-676.
  • Zhang, Q., Huo, R., Ma, Y., Yan, S., Yang, L. and Chen, F. (2020). A novel microwaveassisted steam distillation approach for separation of essential oil from tree peony (Paeonia suffruticosa Andrews) petals: optimization, kinetic, chemical composition and antioxidant activity. Ind. Crops Prod. 154: 112669.
  • Kusuma, H., Altway, A. and Mahfud, M. (2019). The application of face-centered central composite design for the optimization of patchouli oil extraction from Pogostemon cablin Benth dried leaves using microwave hydrodistillation method. J. Chem. Technol. Metall. 54(4): 787–792.
  • Vila Verde, G.M., Barros, D.A., Oliveira, M.S., Aquino, G.L.B., Santos, D.M., De Paula, J.R., Dias, L.D., Pieiro, M. and Pereira, M.M. (2018). A green protocol for microwave-assisted extraction of volatile oil terpenes from Pterodon emarginatus Vogel. (Fabaceae). Molecules. 23(3): 651.
  • Wei, Z.F., Zhao, R.N., Dong, L.J., Zhao, X.Y., Su, J.X., Zhao, M., Li, L., Bian, Y.J. and Zhang, L.J. (2018). Dual-cooled solvent-free microwave extraction of Salvia officinalis L. essential oil and evaluation of its antimicrobial activity. Ind. Crops Prod. 120: 71-76.
  • Zhang, K., Ding, Z., Mo, M., Duan, W., Bi, Y. and Kong, F. (2020). Essential oils from sugarcane molasses: chemical composition, optimization of microwave-assisted hydrodistillation by response surface methodology and evaluation of its antioxidant and antibacterial activities. Ind. Crops Prod. 156: 112875.
  • Khalili, G., Mazloomifar, A., Larijani, K., Tehrani, M.S. and Azar, P.A. (2018). Solvent-free microwave extraction of essential oils from Thymus vulgaris L. and Melissa officinalis L. Ind. Crops Prod. 119: 214-217.
  • Chen, F., Du, X., Zu, Y. and Yang, L. (2015). A new approach for preparation of essential oil, followed by chlorogenic acid and hyperoside with microwave-assisted simultaneous distillation and dual extraction (MSDDE) from Vaccinium uliginosum leaves. Ind. Crops Prod. 77: 809–826.
  • Kusuma, H., Altway A. and Mahfud, M. (2019). An optimization of microwave hydrodistillation extraction of vetiver oil using a face-centered central composite design. J. Chem. Technol. Metall. 54(4): 803-809.
  • Chen, F., Zhang, Q., Gu, H. and Yang, L. (2018). A modified approach for separating essential oil from the roots and rhizomes of Asarum heterotropoides var. mandshuricum. J. Clean. Prod. 172: 2075-2089.
  • Feyzi, E., Eikani, M.H., Golmohammad, F. and Tafaghodinia, B. (2017). Extraction of essential oil from Bunium persicum (Boiss.) by instant controlled pressure drop (DIC). J. Chromatogr. A. 1530: 59-67.
  • Chun-Ping, X., Yuanshang, L., Shanshan, Z., Ying, Z., Shaohua, L. and Zhizhong, H. (2015). Optimization of essential oil from Chrysanthemum morifolium ramat by enzymatic extraction and application as cigarette flavor. J. Biol. Act. Prod. Nat. 5(4): 255-263.
  • Halim, N.A.A., Abidin, Z.Z., Siajam, S.I., Hean, C.G. and Harun, M.R. (2020). Screening of factors influencing the yield of Citrus hystrix leaves essential oil extracted via pressurized hot water extraction based on resolution V fractional factorial design. J. Food Process Eng. 43(11): e13531.
  • Farhat, A., Fabiano-Tixier, A.S., Maataoui, M.E., Maingonnat, J.F., Romdhane, M. and Chemat, F. (2011). Microwave steam diffusion for extraction of essential oil from orange peel: kinetic data, extract’s global yield and mechanism. Food Chem. 125(1): 255-261.
  • Waheed, A., Akram, S., Ashraf, R., Mushtaq, M. and Adnan, A. (2020). Kinetic model and optimization for enzyme assisted hydrodistillation of d limonene rich essential oil from orange peel. Flavour Fragr. J. 35(5): 561-569
  • Benmoussa, H., Elfalleh, W., He, S., Romdhane, M., Benhamou, A. and Chawech, R. (2018). Microwave hydrodiffusion and gravity for rapid extraction of essential oil from Tunisian cumin (Cuminum cyminum L.) seeds: optimization by response surface methodology. Ind. Crops Prod. 124: 633-642.
  • Eikani, M.H., Golmohammad, F., Amoli, H.S. and Sadr, Z.B. (2013). An experimental design approach for pressurized liquid extraction from cardamom seeds. Sep. Sci. Technol. 48(8): 1194–1200.
  • Rashidi, S., Eikani, M.H. and Ardjmand, M. (2018). Extraction of Hyssopus officinalis L. essential oil using instant controlled pressure drop process. J. Chromatogr. A. 1579: 9-19.
  • Auta, M., Musa, U., Tsado, D. G., Faruq, A.A., Isah, A.G., Raji, S. and Nwanisobi, C. (2018). Optimization of citrus peels d-limonene extraction using solvent-free microwave green technology. Chem. Eng. Commun. 205(6): 789-796.
  • Sahraoui, N., Hazzit, M. and Boutekedjiret, C. (2017). Effects of microwave heating on the antioxidant and insecticidal activities of essential oil of Origanum glandulosum Desf. obtained by microwave steam distillation. J. Essent. Oil Res. 29(5): 420-429.
  • Issaadi-Hamitouche, T., Besombes, C. and Allaf, K. (2017). Instant autovaporization as intensification way of classic distillation processes: fundamental and industrial applications. Energy Procedia. 139: 651-657.
  • Nguyen, P.H.D., Le Nguyen, K.T., Nguyen, T.T.N., Duong, N.L., Hoang, T.C., Pham, T.T.P. and Vo, D.V.N. (2019). Application of microwave-assisted technology: a green process to produce ginger products without waste. J. Food Process Eng. 42(3): e12996.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.