81
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Biocompatibility and Antibacterial Potential of the Cinnamomum camphora cineoliferum (L.) J. Presl. and Melaleuca ericifolia Sm. Essential Oils Against Facultative and Obligate Endodontic Anaerobes

, , , , , , , , & show all
Pages 111-125 | Received 22 Nov 2021, Accepted 02 Feb 2022, Published online: 16 Mar 2022

References

  • Weiger, R., Axmann-Krcmar, D. and LM, C. (1998). Prognosis of conventional root canal treatment reconsidered. Dent. Traumatol. 14(1): 1-9.
  • Tabassum, S. and Khan, F.R. (2016). Failure of endodontic treatment: The usual suspects. Eur. J. Dent. 10(01): 144-147.
  • Dahlén, G., Samuelsson, W., Molander, A. and Reit, C. (2000). Identification and antimicrobial susceptibility of enterococci isolated from the root canal. Oral Microbiol. Immunol. 15(5): 309-312.
  • Peters, L.B., van Winkelhoff, A.J., Buijs, J.F. and Wesselink, P.R. (2002). Effects of instrumentation, irrigation and dressing with calcium hydroxide on infection in pulpless teeth with periapical bone lesions. Int. Endod. J. 35(1): 13-21.
  • Sakamoto, M., Siqueira, J.F., Rôças, I.N. and Benno, Y. (2007). Bacterial reduction and persistence after endodontic treatment procedures. Oral Microbiol. Immunol. 22(1): 19-23.
  • Lew, H.P., Quah, S.Y., Lui, J.N., Bergenholtz, G., Hoon Yu V.S. and Tan, K.S. (2015). Isolation of alkaline-tolerant bacteria from primary infected root canals. J. Endod. 41(4): 451-456.
  • Jungermann, G.B., Burns, K., Nandakumar, R., Tolba, M., Venezia, R.A. and Fouad, A.F. (2011). Antibiotic resistance in primary and persistent endodontic infections [published correction appears in J. Endod. 2012 Apr;38(4):535]. J. Endod. 37(10): 1337-1344.
  • Rôças, I.N. and Siqueira, J.F. (2012). Characterization of microbiota of root canal-treated teeth with posttreatment disease. J. Clin. Microbiol. 50(5): 1721-1724.
  • Steininger, C. and Willinger, B. (2016). Resistance patterns in clinical isolates of pathogenic Actinomyces species. J. Antimicrob. Chemother. 71(2): 422-427.
  • Stein, K., Farmer, J., Singhal, S., Marra, F., Sutherland, S. and Quiñonez, C. (2018). The use and misuse of antibiotics in dentistry. J. Am. Dent. Assoc. 149(10): 869-884.e5.
  • Marinković. J., Ćulafić, D.M., Nikolić, B., Đukanović, S., Marković, T., Tasić, G., Ćirić, A. and Marković, D. (2020). Antimicrobial potential of irrigants based on essential oils of Cymbopogon martinii and Thymus zygis towards in vitro multispecies biofilm cultured in ex vivo root canals. Arch. Oral. Biol. 117: 104842.
  • Marković, T. (2011). Essential oils and their safe application. Institute for Medicinal Plant Research, dr Josif Pančić”, Belgrade, Serbia - in Serbian.
  • Borah, A., Pandey, S.K., Haldar, S. and Lal, M. (2019). Chemical composition of leaf essential oil of Psidium guajava L. from North East India. J. Essent. Oil-Bear. Plants. 22(1): 248-253.
  • Sarma, N., Begum, T., Pandey, S.K., Gogoi, R., Munda, S. and Lal, M. (2020). Chemical profiling of leaf essential oil of Lantana camara Linn. from North-East India. J. Essent. Oil-Bear. Plants. 23(5): 1035-1041.
  • Munda, S., Pandey, S.K., Dutta, S., Baruah, J. and Lal, M. (2019). Antioxidant activity, antibacterial activity and chemical composition of essential oil of Artemisia vulgaris L. leaves from Northeast India. J. Essent. Oil-Bear. Plants. 22(2): 368-379.
  • Gogoi, R., Sarma, N., Begum, T., Pandey, S. K. and Lal, M. (2020). North-East Indian Chromolaena odorata (L. King Robinson) aerial part essential oil chemical composition, pharmacological activities - neurodegenerative inhibitory and toxicity study. J. Essent. Oil-Bear. Plants. 23(6): 1173-1191.
  • Munda, S., Dutta, S., Pandey, S.K., Sarma, N. and Lal, M. (2019). Antimicrobial activity of essential oils of medicinal and aromatic plants of the North East India: A biodiversity hot spot. J. Essent. Oil-Bear. Plants. 22(1): 105-119.
  • Paw, M., Begum, T., Gogoi, R., Pandey, S.K. and Lal, M. (2020). Chemical composition of Citrus limon L. Burmf peel essential oil from North East India. J. Essent. Oil-Bear. Plants. 23(2): 337-344.
  • Loying, R., Gogoi, R., Sarma, N., Borah, A., Munda, S., Pandey, S.K. and Lal, M. (2019). Chemical compositions, in-vitro antioxidant, anti-microbial, anti-inflammatory and cytotoxic activities of essential oil of Acorus calamus L. rhizome from North-East India. J. Essent. Oil-Bear. Plants. 22(5): 1299-1312.
  • Gogoi, R., Loying, R., Sarma, N., Begum, T., Pandey, S.K. & Lal, M. (2020). Comparative analysis of in-vitro biological activities of methyl eugenol rich Cymbopogon khasianus hack., leaf essential oil with pure methyl eugenol compound. Curr. Pharm. Biotechnol. 21(10): 927-938.
  • Sarma, N., Gogoi, R., Loying, R., Begum, T., Munda, S., Pandey, S.K., and Lal, M. (2021). Phytochemical composition and biological activities of essential oils extracted from leaves and flower parts of Corymbia citriodora (Hook.). J. Environ. Biol. 42: 552-562.
  • Araujo, M.W.B., Charles, C.A., Weinstein, R.B, McGuire, J.A., Parikh-Das, A.M., Du, Q., Zhang, J., Berlin, J.A. and Gunsolley, J.C. (2015). Meta-analysis of the effect of an essential oil-containing mouthrinse on gingivitis and plaque. J. Am. Dent. Assoc. 146(8): 610-622.
  • Haas, A.N., Wagner, T.P., Muniz, F.W.M.G., Fiorini, T., Cavagni, J. and Celeste, R.K (2016). Essential oils-containing mouthwashes for gingivitis and plaque: Meta-analyses and meta-regression. J. Dent. 55: 7-15.
  • Takenaka, S., Ohsumi, T. and Noiri, Y. (2019). Evidence-based strategy for dental biofilms: Current evidence of mouthwashes on dental biofilm and gingivitis. Jpn. Dent. Sci. Rev. 55(1): 33-40.
  • Abbaszadegan, A., Sahebi, S., Gholami, A., Delroba, A., Kiani, A., Iraji, A. and Abbott, P.V. (2016). Time-dependent antibacterial effects of Aloe vera and Zataria multiflora plant essential oils compared to calcium hydroxide in teeth infected with Enterococcus faecalis. J. Investig. Clin. Dent. 7(1): 93-101.
  • Ahirwar, P., Shashikiran, N.D., Sundarraj, R.K., Singhla, S., Thakur, R.A. and Maran, S.(2018). A clinical trial comparing antimicrobial efficacy of "essential oil of Ocimum sanctum" with triple antibiotic paste as an intracanal medicament in primary molars. J. Indian Soc. Pedod. Prev. Dent. 36(2) :191-197.
  • Shakya, V.K, Luqman, S., Tikku, A.P., Chandra, A. and Singh, D.K. (2019). A relative assessment of essential oil of Chrysopogon zizanioides and Matricaria chamomilla along with calcium hydroxide and chlorhexidine gel against Enterococcus faecalis in ex vivo root canal models. J. Conserv. Dent. 22(1) :34-39.
  • Ríos, J.L. (2016). Essential Oils: What they are and how the terms are used and defined. In: Preedy VR, ed. Essential Oils in Food Preservation, Flavor and Safety. pp. 3-10. Published academic press.
  • Stubbs, B.J., Specht, A. and Brushett, D. (2004). The Essential oil of Cinnamomum camphora (L.) Nees and Eberm.-Variation in oil composition throughout the tree in two chemotypes from Eastern Australia. J. Essent. Oil Res. 16(1): 200-205.
  • https://www.cabi.org/isc/datasheet/13519 accessed on 14.02.2021.
  • Brophy, J.J. and Doran, J.C. (2004). Geographic variation in oil characteristics in Melaleuca ericifolia. J. Essent. Oil. Res. 16(1): 4-8.
  • Farag, R.S., Shalaby A.S., El-Baroty, G.A., Ibrahim, N.A., Ali M.A. and Hassan, E.M. (2004). Chemical and biological evaluation of the essential oils of different Melaleuca species. Phytother. Res. 18(1): 30-35.
  • Firmino, D.F., Cavalcante, T.T.A., Gomes, G.A., Firmino, N.C.S., Rosa, L.D., de Carvalho, M.G. and Catunda, F.E.A. Jr. (2018). Antibacterial and antibiofilm activities of Cinnamomum Sp. essential oil and cinnamaldehyde: antimicrobial activities. Sci. World J. 2018: 7405736.
  • Wang, W., Li, D., Huang, X., Yang, H., Qiu, Z., Zou, L., Liang, Q., Shi, Y., Wu, Y., Wu, S., Yang, C. and Li, Y. (2019). Study on antibacterial and quorum-sensing inhibition activities of Cinnamomum camphora leaf essential oil. Molecules. 24(20): 3792
  • Gogoi, R., Sarma, N., Loying, R., Pandey, S.K., Begum, T. and Lal. M. (2021). A comparative analysis of bark and leaf essential oil and their chemical composition, antioxidant, anti-inflammatory, antimicrobial activities and genotoxicity of North East Indian Cinnamomum zeylanicum Blume. Nat. Prod. J. 11(1): 74-84.
  • Rahman, F.A., Priya, V., Gayathri, R. and Geetha, R.V. (2016). In vitro antibacterial activity of camphor oil against oral microbes. Int. J. Pharm. Sci. Rev. Res. 39(1): 119-121.
  • Hammer, K.A., Dry, L., Johnson, M., Michalak, E.M., Carson, C.F. and Riley, T.V. (2003). Susceptibility of oral bacteria to Melaleuca alternifolia (tea tree) oil in vitro. Oral Microbiol. Immunol. 18(6): 389-92.
  • Marinkovic, J., Markovic, T., Nikolic, B., Soldatovic, I., Ivanov, M., Ciric, A., Sokovic, M. and Markovic, D. (2021). Antibacterial and antibiofilm potential of Leptospermum petersonii F.M.Bailey, Eucalyptus citriodora Hook., Pelargonium graveolens L’Hér. and Pelargonium roseum (Andrews) DC. essential oils against selected dental isolates. J. Essent. Oil-Bear. Plants. 24(2): 304-316.
  • Adams, R.P. (2009). Identification of essential oil compounds by gas chromatography and mass spectrometry. (4th ed.). Carol Stream: Allured Publishing Corporation.
  • Marinković, J., Marković, T., Brkić, S., Radunović, M., Soldatović, I., Ćirić, A. and Marković, D. (2020). Microbiological analysis of primary infected root canals with symptomatic and asymptomatic apical periodontitis of young permanent teeth. Balk. J. Dent. Med. 24(3): 170-177.
  • Nikolić, B., Vasilijević, B., Ćirić, A., Mitić-Ćulafić, D., Cvetković, S., Džamić, A. and Knežević-Vukčević, J. (2019). Bioactivity of Juniperus communis essential oil and post-distillation waste: assessment of selective toxicity against food contaminants. Arch. Biol. Sci. 71(2): 235-244.
  • Guo, S., Geng, Z., Zhang, W., Liang, J., Wang, C., Deng, Z. and Du, S. (2016). The chemical composition of essential oils from Cinnamomum camphora and their insecticidal activity against the stored product pests. Int. J. Mol. Sci. 17(11): 1836.
  • Gogoi, R., Begum, T., Sarma, N., Kumar Pandey, S. and Lal, M. (2021). Chemical composition of Callistemon citrinus (Curtis) Skeels aerial part essential oil and its pharmacological applications, neurodegenerative inhibitory, and genotoxic efficiencies. J. Food Biochem. e13767.
  • Lal, M., Dutta, S., Munda, S. and Pandey, S.K. (2018). Identification and registration of a high essential oil yielding variety (Jor Lab L-14) of Lemongrass (Cymbopogon flexuosus L.) through mutation breeding technique. J. Essent. Oil-Bear. Plants. 21(6): 1604-1611.
  • Lal, M., Borah, A. and Pandey, S.K. (2019). Identification of a new high geraniol rich variety “Jor Lab L-15” of Lemongrass [Cymbopogon khasianus (Hack) Stapf (ex Bor)]. J. Essent. Oil-Bear. Plants. 22(4): 972-978.
  • Yanakiev, S. (2020). Effects of Cinnamon (Cinnamomum spp.) in Dentistry: A Review. Molecules. 25(18): 4184.
  • Chaudhari, L.K., Jawale, B.A., Sharma, S., Sharma, H., Kumar, C.D. and Kulkarni, P.A. (2012). Antimicrobial activity of commercially available essential oils against Streptococcus mutans. J. Contemp. Dent. Pract. 13(1): 71-4.
  • Wang, L., Zhang, K., Zhang, K., Zhang, J., Fu, J., Li, J., Wang, G., Qiu, Z., Wang, X. and Li, J. (2020). Antibacterial activity of Cinnamomum camphora essential oil on Escherichia coli during planktonic growth and biofilm formation. Front. Microbiol. 11.
  • Wang, W., Li, D., Huang, X., Yang, H., Qiu, Z., Zou, L., Liang, Q., Shi, Y., Wu, Y., Wu, S., Yang, C. and Li, Y. (2019). Study on antibacterial and quorum-sensing inhibition activities of Cinnamomum camphora leaf essential oil. Molecules. 24(20): 3792.
  • Wilkinson, J.M. and Cavanagh, H.M. (2005). Antibacterial activity of essential oils from Australian native plants. Phytother. Res. An Internat. J. Pharm. Tox. Eval. Natural Prod. Deriv. 19(7): 643-646.
  • Graziano, T.S., Calil, C.M., Sartoratto, A., Franco, G.C.N., Groppo, F.C. and Cogo-Müller, K. (2016). In vitro effects of Melaleuca alternifolia essential oil on growth and production of volatile sulphur compounds by oral bacteria. J. Appl. Oral Sci. 24: 582-589.
  • Ziółkowska-Klinkosz, M., Kedzia, A., Meissner, H.O. and Kedzia, A.W. (2016). Evaluation of the tea tree oil activity to anaerobic bacteria-in vitro study. Acta Pol. Pharm. 73: 389-94.
  • Nikolić, M.M., Jovanović, K.K., Marković, T.L., Marković, D.L., Gligorijević, N.N., Radulović, S.S., Kostić, M., Glamočlija, J.M. and Soković, M.D. (2017). Anti-microbial synergism and cytotoxic properties of Citrus limon L., Piper nigrum L. and Melaleuca alternifolia (Maiden and Betche) Cheel essential oils. J. Pharm. Pharmacol. 69(11): 1606-1614.
  • Qi, J., Gong, M., Zhang, R., Song, Y., Liu, Q., Zhou, H., Wang, J. and Mei, Y. (2021). Evaluation of the antibacterial effect of tea tree oil on Enterococcus faecalis and biofilm in vitro. J. Ethnopharmacol. 281: 114566.
  • Love, R.M. (2001). Enterococcus faecalis-a mechanism for its role in endodontic failure. Int. Endod. J. 34(5): 399-405.
  • Stuart, C.H., Schwartz, S.A., Beeson, T.J. and Owatz, C.B. (2006). Enterococcus faecalis: its role in root canal treatment failure and current concepts in retreatment. J. Endod. 32(2): 93-98.
  • Siqueira, J.F.Jr. and Rôças, I.N. (2008). Clinical implications and microbiology of bacterial persistence after treatment procedures. J. Endod. 34(11) :1291-1301.
  • Ravinanthanan, M., Hegde, M.N., Shetty, V. and Kumari, S. (2018). Cytotoxicity effects of endodontic irrigants on permanent and primary cell lines. Biomed. Biotechnol. Res. J. 2(1): 59-62.
  • Uğur Aydin, Z., Akpinar, K.E., Hepokur, C. and Erdönmez, D. (2018). Assessment of toxicity and oxidative DNA damage of sodium hypochlorite, chitosan and propolis on fibroblast cells. Braz. Oral Res. 32: e119.
  • Satti, P., Kakarla, P., Jogendra Avula, S.S., Muppa, R., Kiran Rompicharla, S.V. and Biswas, S. (2019). Indigenous irrigants as potent antimicrobials in endodontic treatment: An in vitro study. J. Indian Soc. Pedod. Prev. Dent. 37(3): 275-281.
  • Yadlapati, M., Souza, L.C., Dorn, S., Garlet, G.P., Letra, A. and Silva, R.M. (2013). Deleterious effect of triple antibiotic paste on human periodontal ligament fibroblasts. Int. Endod. J. 47(8): 769-775.
  • de Souza Costa, C.A., Hebling, J., Scheffel, D.L., Soares, D.G., Basso, F.G. and Ribeiro, A.P.D. (2014). Methods to evaluate and strategies to improve the biocompatibility of dental materials and operative techniques. Dent. Mater. 30(7): 769-784.
  • Miladinović, D.L., Ilić, B.S. and Kocić, B.D. (2015). Chemoinformatics approach to antibacterial studies of essential oils. Nat. Prod. Commun. 10(6): 1063-6.
  • Mulyaningsih, S., Sporer, F., Reichling, J. and Wink, M. (2011). Antibacterial activity of essential oils from Eucalyptus and of selected components against multidrug-resistant bacterial pathogens. Pharm. Biol. 49(9): 893-899.
  • Şimşek, M. and Duman, R. (2017). Investigation of effect of 1, 8-cineole on antimicrobial activity of chlorhexidine gluconate. Pharmacogn. Res. 9(3): 234.
  • Zengin, H. and Baysal, A.H. (2014). Antibacterial and antioxidant activity of essential oil terpenes against pathogenic and spoilage-forming bacteria and cell structure-activity relationships evaluated by SEM microscopy. Molecules. 19(11): 17773-17798.
  • Tohidpour, A., Sattari, M., Omidbaigi, R., Yadegar, A. and Nazemi, J. (2010). Antibacterial effect of essential oils from two medicinal plants against Methicillin-resistant Staphylococcus aureus (MRSA). Phytomedicine. 17(2): 142-145.
  • Karlović, Z., Anić, I., Miletić, I., Prpić-Mehičić, G., Pezelj-Ribarić, S. and Maršan, T. (2000). Antibacterial activity of halothane, eucalyptol and orange oil. Acta Stomatol. Croat. 34(3): 307-309.
  • Choo, A., Delac, D.M. and Messer, L.B. (2001). Oral hygiene measures and promotion: review and considerations. Aust. Dent. J. 46(3): 166-173.
  • Masadeh, M.M., Gharaibeh, S.F., Alzoubi, K.H., Al-Azzam, S.I. and Obeidat, W.M. (2013). Antimicrobial activity of common mouthwash solutions on multidrug-resistance bacterial biofilms. J. Clin. Med. Res. 5(5): 389.
  • Pereira, I., Severino, P., Santos, A.C., Silva, A.M. and Souto, E.B. (2018). Linalool bioactive properties and potential applicability in drug delivery systems. Colloids Surf. B. 171: 566-578.
  • Leite, A.M., Lima, E.D.O., Souza, E.L.D., Diniz, M.D.F.F.M., Trajano, V.N. and Medeiros, I.A.D. (2007). Inhibitory effect of beta-pinene, alpha-pinene and eugenol on the growth of potential infectious endocarditis causing Gram-positive bacteria. Rev. Ciênc. Farm. Básica Apl. 43: 121-126.
  • Memariani, Z., Sharifzadeh, M., Bozorgi, M., Hajimahmoodi, M., Farzaei, M.H., Gholami, M., Siavoshi, F. and Saniee, P. (2017). Protective effect of essential oil of Pistacia atlantica Desf. on peptic ulcer: role of α-pinene. J. Tradit. Chin. Med. 37(1): 57-63.
  • Matias, E.F.F., Alves, E.F., Silva, M.K.N., Carvalho, V.R.A., Figueredo, F.G., Ferreira, J.V.A., Coutinho, H.D.M., Silva, J.M.F.L., Ribeiro-Filho, J. and Costa, J.G.M. (2016). Seasonal variation, chemical composition and biological activity of the essential oil of Cordia verbenacea DC (Boraginaceae) and the sabinene. Ind. Crops Prod. 87: 45-53.
  • Park, S.N., Lim, Y.K., Freire, M.O., Cho, E., Jin, D. and Kook, J.K. (2012). Antimicrobial effect of linalool and α-terpineol against periodontopathic and cariogenic bacteria. Anaerobe. 18(3): 369-372.
  • Wongsariya, K., Phanthong, P., Bunyapraphatsara, N., Srisukh, V. and Chomnawang, M.T. (2013). Synergistic interaction and mode of action of Citrus hystrix essential oil against bacteria causing periodontal diseases. Pharm. Biol. 52(3): 273-280.
  • da Silva, R.A.C., Lopes, P.M., de Azevedo, M.M.B., Costa, D.C., Alviano, C.S., and Alviano, D.S. (2012). Biological activities of α-pinene and β-pinene enantiomers. Molecules. 17(6): 6305-6316.
  • Vasilijević, B., Knežević-Vukčević, J., Mitić-Ćulafić, D., Orčić, D., Francišković, M., Srdic-Rajic, T., Jovanović, M. and Nikolić, B. (2018). Chemical characterization, antioxidant, genotoxic and in vitro cytotoxic activity assessment of Juniperus communis var. saxatilis. Food Chem. Toxicol. 112: 118-125.
  • Bakkali, F., Averbeck, S., Averbeck, D. and Idaomar, M. (2008). Biological effects of essential oils-a review. Food Chem. Tox. 46(2): 446-475.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.