113
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Wound Healing, Anti-analgesic, and Antioxidant Activity of Nigella sativa Linn., Essential Based Topical Formulations in Rat Model Experimental Skin Defects

ORCID Icon, &
Pages 45-60 | Received 30 Sep 2022, Accepted 23 Jan 2023, Published online: 28 Feb 2023

References

  • Tejada, S., Manayi, A., Daglia, M., S. F Nabavi, Sureda, A., Hajheydari, Z. and S. M Nabavi, (2016). Wound healing effects of curcumin: A short review. Curr. Pharm. Biotechnol. 17(11): 1002-1007S. doi: 10.2174/1389201017666160721123109
  • Singh, S., Young, A. and McNaught, C.E. (2017). The physiology of wound healing. Surgery (Oxford) 35(9): 473-477S. doi: 10.1016/j.mpsur.2017.06.004
  • Strodtbeck, F. (2001). Physiology of wound healing. Newborn Infant. Nurs. 1(1): 43-52 doi: 10.1053/nbin.2001.23176
  • Buganza Tepole, A. and Kuhl, E. (2013). Systems-based approaches toward wound healing. Pediatr. Res. 73(2): 553-563. doi: 10.1038/pr.2013.3
  • Singh, M.P. and Sharma, C.S. (2009). Wound healing activity of Terminalia chebula in experimentally induced diabetic rats. Int. J. Pharmtech Res. 1(4): 1267-1270.
  • Kohen R. and Gati I. (2000). Skin low molecular weight antioxidants and their role in aging and in oxidative stress. Toxicology. 148(2-3): 149-157. doi: 10.1016/S0300-483X(00)00206-7
  • Eroğlu, İ., Gökçe, E.H., Tsapis, N., Tanrıverdi, S.T., Gökçe, G., Fattal, E. and Özer, Ö. (2015). Evaluation of characteristics and in vitro antioxidant properties of RSV loaded hyaluronic acid–DPPC microparticles as a wound healing system. Colloids Surf. B. 126, 50-57. doi: 10.1016/j.colsurfb.2014.12.006
  • Ndiaye, M., Philippe, C., Mukhtar, H. and Ahmad, N. (2011). The grape antioxidant resveratrol for skin disorders: promise, prospects, and challenges. Arch. Biochem. Biophys. 508(2): 164-170 doi: 10.1016/j.abb.2010.12.030
  • Mayaud, L., Carricajo, A., Zhiri, A. and Aubert, G. (2008). Comparison of bacteriostatic and bactericidal activity of 13 essential oils against strains with varying sensitivity to antibiotics. Lett. Appl. Microbiol. 47(3): 167-173. doi: 10.1111/j.1472-765X.2008.02406.x
  • Komarcević, A. (2000). The modern approach to wound treatment. Med. Pregl. 53(7-8): 363-368.
  • Hartman, D. and Coetzee, J.C. (2002). Two US practitioners’ experience of using essential oils for wound care. J. Wound Care. 11(8): 317-320. doi: 10.12968/jowc.2002.11.8.26432
  • Woollard, A.C., Tatham, K.C. and Barker, S. (2007). The influence of essential oils on the process of wound healing: a review of the current evidence. J. Wound Care. 16(6): 255-257. doi: 10.12968/jowc.2007.16.6.27064
  • Saporito, F., Sandri, G., Bonferoni, M.C., Rossi, S., Boselli, C., Cornaglia, A.I. and Ferrari, F. (2018). Essential oil-loaded lipid nanoparticles for wound healing. Int. J. Nanomedicine. 13: 175-186. doi: 10.2147/IJN.S152529
  • D’Amato, S., Serio, A., López, C.C. and Paparella, A. (2018). Hydrosols: Biological activity and potential as antimicrobials for food applications. Food Control. 86: 126-137. doi: 10.1016/j.foodcont.2017.10.030
  • Rao, R. (2013). Hydrosols and water-soluble essential oils: Medicinal and biological properties. Recent Progress in Medicinal Plants, Essential oils I. Govil J.N and Bhattacharya, S. (eds.) Studium Press LlC, Houston, Texas. 119-140.
  • Śmigielski, K.B., Prusinowska, R., Krosowiak, K. and Sikora, M. (2013). Comparison of qualitative and quantitative chemical composition of hydrolate and essential oils of lavender (Lavandula angustifolia). J. Essent. Oil Res. 25(4): 291-299. doi: 10.1080/10412905.2013.775080
  • Burits, M. and Bucar, F. (2000). Antioxidant activity of Nigella sativa essential oil. Phytother. Res. 14(5): 323-328. doi: 10.1002/1099-1573(200008)14:5<323::AID-PTR621>3.0.CO;2-Q
  • Salem, M.L. (2005). Immunomodulatory and therapeutic properties of the Nigella sativa L. seed. Int. Immunopharmacol. 5(13-14): 1749-1770. doi: 10.1016/j.intimp.2005.06.008
  • Abedi, A.S., Rismanchi, M., Shahdoostkhany, M., Mohammadi, A. and Mortazavian, A.M. (2017). Microwave-assisted extraction of Nigella sativa L. essential oil and evaluation of its antioxidant activity. J. Food Sci. Technol. 54(12): 3779-3790. doi: 10.1007/s13197-017-2718-1
  • Ghamari, M.A., Amiri, S., Rezazadeh-Bari, M. and Rezazad-Bari, L. (2022). Physical, mechanical, and antimicrobial properties of active edible film based on milk proteins incorporated with Nigella sativa essential oil. Polym. Bull. 79(2): 1097-1117 doi: 10.1007/s00289-021-03550-y
  • Amin, B. and Hosseinzadeh, H. (2016). Black cumin (Nigella sativa) and its active constituent, thymoquinone: an overview on the analgesic and anti-inflammatory effects. Planta med. 82(01/02): 8-16.
  • El-Tahir, K.E.D.H. and Bakeet, D.M. (2006). The black seed Nigella sativa Linnaeus-A mine for multi cures: a plea for urgent clinical evaluation of its volatile oil. J. Taibah Univ. Medical Sci. 1(1): 1-19.
  • Bayala, B., Bassole, I.H., Scifo, R., Gnoula, C., Morel, L., Lobaccaro, J.M.A. and Simpore, J. (2014). Anticancer activity of essential oils and their chemical components-a review. Am. J. Cancer Res. 4(6): 591.
  • Periasamy, V.S., Athinarayanan, J. and Alshatwi, A.A. (2016). Anticancer activity of an ultrasonic nanoemulsion formulation of Nigella sativa L. essential oil on human breast cancer cells. Ultrason. Sonochem. 31: 449-455. doi: 10.1016/j.ultsonch.2016.01.035
  • Ashraf, S.S., Rao, M.V., Kaneez, F.S., Qadri, S., Al-Marzouqi, A.H., Chandranath, I.S. and Adem, A. (2011). Nigella sativa extract as a potent antioxidant for petrochemical-induced oxidative stress. J. Chromatogr. Sci. 49(4): 321-326. doi: 10.1093/chrsci/49.4.321
  • Ali, B.H. and Blunden, G. (2003). Pharmacological and toxicological properties of Nigella sativa. Phytother. Res. 17(4): 299-305. doi: 10.1002/ptr.1309
  • Hossen, J., Ali, M.A. and Reza, S. (2021). Theoretical investigations on the antioxidant potential of a non-phenolic compound thymoquinone: a DFT approach. J. Mol. Model. 27(6): 1-11. doi: 10.1007/s00894-021-04795-0
  • Kassab, R.B. and El-Hennamy, R.E. (2017). The role of thymoquinone as a potent antioxidant in ameliorating the neurotoxic effect of sodium arsenate in female rat. Egypt. J. Basic Appl. Sci. 4(3): 160-167.
  • Atta, M.S., Almadaly, E.A., El-Far, A.H., Saleh, R.M., Assar, D.H., Al Jaouni, S.K. and Mousa, S.A. (2017). Thymoquinone defeats diabetes-induced testicular damage in rats targeting antioxidant, inflammatory and aromatase expression. Int. J. Mol. Sci. 18(5): 919. doi: 10.3390/ijms18050919
  • Mahmoud, Y.K. and Abdelrazek, H.M. (2019). Cancer: Thymoquinone antioxidant/pro-oxidant effect as potential anticancer remedy. Biomed. Pharmacother. 115: 108783. doi: 10.1016/j.biopha.2019.108783
  • Pandey, S.K., Gogoi, R., Bhandari, S., Sarma, N., Begum, T., Munda, S. and Lal, M. (2022). A comparative study on chemical composition, pharmacological potential and toxicity of Pogostemon cablin Linn., (Patchouli) flower and leaf essential oil. J. Essent. Oil-Bear. Plants. 25(1): 160-179. doi: 10.1080/0972060X.2021.2013325
  • Adams, R.P. (2007). Identification of Essential Oil Components by Gas Chromatography/mass spectrometry. Allured Publishing Corporation, Carol Stream, Illinois, USA
  • Curvers, J.M.P.M., Rijks, J., Cramers, C.A.M.G., Knauss, K. and Larson, P. (1985). Temperature programmed retention indices: Calculation from isothermal data. Part 1: Theory. J. High Resolut. Chromatogr. 8(9): 607-610.
  • Farboud, E.S., Nasrollahi, S.A., and Tabbakhi, Z. (2011). Novel formulation and evaluation of a Q10-loaded solid lipid nanoparticle cream: in vitro and in vivo studies. Int. J. Nanomedicine 6: 611-617. doi: 10.2147/IJN.S16815
  • Apak, R., Güçlü, K., Özyürek, M. and Karademir, S.E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agric. Food Chem. 52(26): 7970-7981. doi: 10.1021/jf048741x
  • Çelik, S.E., Özyürek, M., Güçlü, K. and Apak, R. (2010). Solvent effects on the antioxidant capacity of lipophilic and hydrophilic antioxidants measured by CUPRAC, ABTS/persulphate and FRAP methods. Talanta, 81(4-5): 1300-1309. doi: 10.1016/j.talanta.2010.02.025
  • Bener, M., Şen, F.B., Önem, A.N., Bekdeşer, B., Çelik, S.E., Lalikoglu, M. and Apak, R. (2022). Microwave-assisted extraction of antioxidant compounds from by-products of Turkish hazelnut (Corylus avellana L.) using natural deep eutectic solvents: Modeling, optimization and phenolic characterization. Food Chem. 385: 132633. doi: 10.1016/j.foodchem.2022.132633
  • Dubuisson, D. and Dennis, S.G. (1977). The formalin test: a quantitative study of the analgesic effects of morphine, meperidine, and brain stem stimulation in rats and cats. Pain. 4: 161-174. doi: 10.1016/0304-3959(77)90130-0
  • Toma, C.C., Simu, G.M., Hanganu, D.A.N.I.E.L.A., Olah, N., Vata, F.M.G., Hammami, C. and Hammami, M. (2010). Chemical composition of the Tunisian Nigella sativa. Note I. Profile on essential oil. Farmacia 58(4): 458-464.
  • Borrajo, P., Karwowska, M. and Lorenzo, J.M. (2022). The effect of Salvia hispanica and Nigella sativa seed on the volatile profile and sensory parameters related to volatile compounds of dry fermented sausage. Molecules. 27(3): 652. doi: 10.3390/molecules27030652
  • Kabir, Y., Akasaka-Hashimoto, Y., Kubota, K. and Komai, M. (2020). Volatile compounds of black cumin (Nigella sativa L.) seeds cultivated in Bangladesh and India. Heliyon. 6(10): e05343. doi: 10.1016/j.heliyon.2020.e05343
  • Wajs, A., Bonikowski, R. and Kalemba, D. (2008). Composition of essential oil from seeds of Nigella sativa L. cultivated in Poland. Flavour Fragr. J. 23(2): 126-132. doi: 10.1002/ffj.1866
  • Benkaci-Ali, F., Baaliouamer, A., Meklati, B.Y. and Chemat, F. (2007). Chemical composition of seed essential oils from Algerian Nigella sativa extracted by microwave and hydrodistillation. Flavour Fragr. J. 22: 148-153. doi: 10.1002/ffj.1773
  • Hosseini, S.S., Nadjafi, F., Asareh, M.H. and Rezadoost, H. (2018). Morphological and yield related traits, essential oil and oil production of different landraces of black cumin (Nigella sativa) in Iran. Sci. Hortic. 233: 1-8. doi: 10.1016/j.scienta.2018.01.038
  • Erdoğan, Ü., Yılmazer, M. and Erbaş, S. (2020). Hydrodistillation of Nigella sativa seed and analysis of Thymoquinone with HPLC and GC-MS. Bilgesci. 4(1): 27-30.
  • Karaman K. (2020). Characterization of Saccharomyces cerevisiae based microcarriers for encapsulation of black cumin seed oil: Stability of thymoquinone and bioactive properties. Food chem. 313: 126129 doi: 10.1016/j.foodchem.2019.126129
  • Malik, S., Singh, A., Negi, P. and Kapoor, V.K. (2021). Thymoquinone: A small molecule from nature with high therapeutic potential. Drug Discov. Today. 26(11): 2716-2725. doi: 10.1016/j.drudis.2021.07.013
  • Apak, R., Güclü, K., Özyürek, M. and Celik, S.E. (2008). Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Microchim. Acta. 160(4): 413-419. doi: 10.1007/s00604-007-0777-0
  • Velnar, T., Bailey, T. and Smrkolj, V. (2009). The wound healing process: an overview of the cellular and molecular mechanisms. J. Int. Med. Res. 37(5): 1528-1542 doi: 10.1177/147323000903700531
  • Gupta, A. and Kumar, P. (2015). Assessment of the histological state of the healing wound. Plast. Aesthet. Res. 2, 239-242. doi: 10.4103/2347-9264.158862
  • Wilgus, T.A. (2020). Inflammation as an orchestrator of cutaneous scar formation: A review of the literature. Plast. Aesthet. Res. 7.
  • Kumar, V., Abbas, A.K., Fausto, N. and Aster, J.C. (2014). Robbins and Cotran pathologic basis of disease, professional edition e-book. Elsevier health sciences.
  • Sultana, J., Molla, M.R., Kamal, M., Shahidullah, M., Begum, F. and Bashar, M.A. (2009). Histological differences in wound healing in maxillofacial region in patients with or without risk factors. Bangladesh J. Plant Pathol. 24(1): 3-8. doi: 10.3329/bjpath.v24i1.2874
  • Guo, S.A. and DiPietro, L.A. (2010). Factors affecting wound healing. J. Dent. Res. 89(3): 219-229. doi: 10.1177/0022034509359125
  • Lazarus, G.S., Cooper, D.M., Knighton, D.R., Margolis, D.J., Percoraro, R.E., Rodeheaver, G. and Robson, M.C. (1994). Definitions and guidelines for assessment of wounds and evaluation of healing. Wound Repair Regen. 2(3): 165-170. doi: 10.1046/j.1524-475X.1994.20305.x
  • Lemo, N., Marignac, G., Reyes-Gomez, E., Lilin, T., Crosaz, O. and Ehrenfest, D.D. (2010). Cutaneous reepithelialization and wound contraction after skin biopsies in rabbits: a mathematical model for healing and remodelling index. Vet Arhiv. 80: 637-52.
  • Karayannopoulou, M., Tsioli, V., Loukopoulos, P., Anagnostou, T. L., Giannakas, N., Savvas, I. and Kaldrymidou, E. (2011). Evaluation of the effectiveness of an ointment based on Alkannins/Shikonins on second intention wound healing in the dog. Can. J. Vet. Res. 75(1): 42-48.
  • Kelly, R. (2016). Keratins in wound healing. In Wound healing biomaterials (pp. 353-365). Woodhead Publishing Limited, Cambridge, United Kingdom.
  • Lenselink, E.A. (2015). Role of fibronectin in normal wound healing. Int. Wound J. 12(3): 313-316. doi: 10.1111/iwj.12109
  • Lee, Y.J., Baek, S.E., Lee, S., Jeong, Y.J., Kim, K.J., Jun, Y.J. and Rhie, J.W. (2019). Wound-healing effect of adipose stem cell- derived extracellular matrix sheet on full- thickness skin defect rat model: Histological and immunohistochemical study. Int. Wound J. 16(1): 286-296. doi: 10.1111/iwj.13030
  • Bao, P., Kodra, A., Tomic-Canic, M., Golinko, M.S., Ehrlich, H.P. and Brem, H. (2009). The role of vascular endothelial growth factor in wound healing. J. Surg. Res. 153(2): 347-358. doi: 10.1016/j.jss.2008.04.023
  • Mohammed, H.A., Qureshi, K.A., Ali, H.M., Al-Omar, M.S., Khan, O. and Mohammed, S.A. (2022). Bio-Evaluation of the Wound Healing Activity of Artemisia judaica L. as Part of the Plant’s Use in Traditional Medicine; Phytochemical, Antioxidant, Anti-Inflammatory, and Antibiofilm Properties of the Plant’s Essential Oils, Antioxidants. 11(2): 332. doi: 10.3390/antiox11020332
  • Sayyedrostami, T., Pournaghi, P., Vosta-Kalaee, S.E. and Zangeneh, M.M. (2018). Evaluation of the wound healing activity of Chenopodium botrys leaves essential oil in rats (a short-term study). J. Essent. Oil-Bear. Plants. 21(1): 164-174. doi: 10.1080/0972060X.2018.1451394
  • Andjić, M., Božin, B., Draginić, N., Kočović, A., Jeremić, J.N., Tomović, M. and Bradić, J.V. (2021). Formulation and evaluation of helichrysum italicum essential oil-based topical formulations for wound healing in diabetic rats. Pharmaceuticals. 14(8): 813. doi: 10.3390/ph14080813

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.