63
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Contact Toxicity and Repellent Efficacy of Kaempferia rotunda L. to Three Stored Product Insects and Synergistic Interactions between Two Major Compounds Benzyl Benzoate and Bornyl Acetate

, , , , , & show all
Pages 343-355 | Received 06 Jan 2023, Accepted 18 Feb 2023, Published online: 03 May 2023

References

  • Egonyu, J.P., Subramanian, S., Tanga, C.M., Dubois, T., Ekesi, S. and Kelemu, S. (2021). Global overview of locusts as food, feed and other uses. Global Food Secur. 31. doi: 10.1016/j.gfs.2021.100574
  • Stefopoulou, A., Maselou, D.A., Papachristos, D., Kolimenakis, A., Michaelakis, A., Athanassiou, C. and Vlontzos, G. (2021). Pest Control in Primary Sector: Towards the Identification of Knowledge Gaps. Agronomy-Basel. 11.
  • Shen, C.Y., Yen, C.Y., Chien, D.K., Tsai, J.J., Yu, S.J. and Liao, E.C. (2020). Influence of storage conditions on the infestation of Tyrophagus putrescentiae and prevalence of mite hypersensitivity in Taiwan. Exp. Appl. Acarol. 80(3): 381-398. doi: 10.1007/s10493-019-00453-6
  • Chen, X.X., Liu, Y.M., Zhao, Q.Y., Cao, W.Q., Chen, X.P. and Zou, C.Q. (2020). Health risk assessment associated with heavy metal accumulation in wheat after long-term phosphorus fertilizer application. Environ. Pollut. 262.
  • Ostry, V., Toman, J., Grosse, Y. and Malir, F. (2018). Cyclopiazonic acid: 50th anniversary of its discovery. World Mycotoxin J. 11(1): 135-148. doi: 10.3920/WMJ2017.2243
  • Mormeta, B.N. (2019). Assessment of pesticide hazard related knowledge and practices of agricultural extension workers in selected small-scale horticulture production areas in Ethiopia. J. Agric. and Environ. Int. 113(1): 5-15.
  • Gorbatov, V.S., Astaikina, A.A., Aptikaev, R.S. and Tikhonov, V.V. (2019). Comparative Hazard and Risk Assessment of Pesticides to Aquatic Organisms. Agrokhimiya. (11): 17-26.
  • Ali, I. and Jain, C.K. (1998). Groundwater contamination and health hazards by some of the most commonly used pesticides. Current Science. 75(10): 1011-1014.
  • Sugeng, A.J., Beamer, P.I., Lutz, E.A. and Rosales, C.B. (2013). Hazard-ranking of agricultural pesticides for chronic health effects in Yuma County, Arizona. Sci. Total Environ. 463: 35-41. doi: 10.1016/j.scitotenv.2013.05.051
  • Perez, S.G., Ramos-Lopez, M.A., Zavala-Sanchez, M.A. and Cardenas-Ortega, N.C. (2010). Activity of essential oils as a biorational alternative to control coleopteran insects in stored grains. J. Med. Plants Res. 4(25): 2827-2835.
  • Vanichpakorn, P., Ding, W. and Cen, X.X. (2010). Insecticidal activity of five Chinese medicinal plants against Plutella xylostella L. larvae. J. Asia-Pac. Entomol. 13(3): 169-173. doi: 10.1016/j.aspen.2009.12.006
  • Ugwu, J.A. (2021). Prospects of botanical pesticides in management of Iroko gall bug, Phytolyma fusca (Hemiptera, Psylloidea) under laboratory and field conditions. J. Basic Appl. Zool. 82(1): 1-9. doi: 10.1186/s41936-020-00198-4
  • Gonzalez, M.S., Lima, B.G., Oliveira, A.F.R., Nunes, D.D., Fernandes, C.P., Santos, M.G., Tietbohl, L.A.C., Mello, C.B., Rocha, L. and Feder, D. (2014). Effects of essential oil from leaves of Eugenia sulcata on the development of agricultural pest insects. Rev. Bras. Farmacogn. 24(4): 413-418. doi: 10.1016/j.bjp.2014.05.003
  • Engelhardt, M., Rapoport, H. and Sokoloff, A. (1965). Odrous secretion of normal and mutant Tribolium confusum. Sci. 150(3696): 632. doi: 10.1126/science.150.3696.632
  • Blanc, M., Kaelin, P. and Gadani, F. (2002). Bacillus thuringiensis (Bt) for the control of insect pests in stored tobacco: a review. Contrib. Tob. Nicotine Res. 20(1): 15-22.
  • Turner, B.D. (1994). Liposcelis bostrychophila (Psocoptera: Liposcelididae), a stored food pest in the UK. Int. J. Pest Manage. 40(2): 179-190. doi: 10.1080/09670879409371879
  • Insisiengmay, O., Newman, M.F. and Haevermans, T. (2020). Two new species of Kaempferia L. (Zingiberaceae) from Cambodia and Lao PDR. Eur. Taxon. 712: 1-15.
  • Lal, M., Munda, S., Dutta, S., Baruah, J. and Pandey, S.K. (2017). Identification of the New High Oil and Rhizome Yielding Variety of Kaempferia galanga (JOR LAB K-1): A Highly Important Indigenous Medicinal Plants of North East India. J. Essent. Oil Bear. Plants. 20(5): 1275-1282. doi: 10.1080/0972060X.2017.1400405
  • Begum, T., Gogoi, R., Sarma, N., Pandey, S.K. and Lal, M. (2023). Novel ethyl p-methoxy cinnamate rich Kaempferia galanga (L.) essential oil and its pharma-cological applications: special emphasis on anticholinesterase, anti-tyrosinase, α-amylase inhibitory, and genotoxic efficiencies. Peer J. 11: e14606. doi: 10.7717/peerj.14606
  • Begum, T., Gogoi, R., Sarma, N., Pandey, S.K. and Lal, M. (2022). Direct sunlight and partial shading alter the quality, quantity, biochemical activities of Kaempferia parvif-lora Wall., ex Baker rhizome essential oil: A high industrially important species. Ind. Crops Prod. 180: 114765. doi: 10.1016/j.indcrop.2022.114765
  • Ahamad, P.Y.A. and Ahmed, S.M. (1991). Potential of Some Rhizomes of Zingberaceae Family as Grain Protectants Against Storage Insect Pests. J. Food Sci. Tech. Mys. 28(6): 375-377.
  • Nugroho, B.W., Schwarz, B., Wray, V. and Proksch, P. (1996). Insecticidal constituents from rhizomes of Zingiber cassumunar and Kaempferia rotunda. Phytochemistry. 41(1): 129-132. doi: 10.1016/0031-9422(95)00454-8
  • Abdelgaleil, S.A.M., Zoghroban, A.A.M., El-Bakry, A.M. and Kassem, S.M.I. (2019). Insecticidal and Antifungal Activities of Crude Extracts and Pure Compounds from Rhizomes of Curcuma longa L. (Zingiberaceae). J. Agr. Sci. Tech. 21(4): 1049-1061.
  • Malahayati, N., Widowati, T.W. and Febrianti, A. (2018). Total Phenolic, Antioxi-dant and Antibacterial Activities of Curcumin Extract of Kunci Pepet (Kaempferia rotunda L). Res. J. Pharm. Biol. Che. 9(3): 129-135.
  • Tushar, Basak, S., Sarma, G.C. and Rangan, L. (2010). Ethnomedical uses of Zingiberaceous plants of Northeast India. J. Ethnopharmacol. 132(1): 286-296. doi: 10.1016/j.jep.2010.08.032
  • Diastuti, H., Chasani, M. and Suwandri. (2020). Antibacterial Activity of Benzyl Benzoate and Crotepoxide from Kaempferia rotunda L. Rhizome. Indones J Chem. 20(1): 9-15. doi: 10.22146/ijc.37526
  • Diastuti, H., Asnani, A., Rastuti, U. and Anggraeni, M. (2020). Toxicity of Benzyl Benzoate from Kaempferia rotunda L. Rhizome. Aip Conf Proc. 2237.
  • Liu, Z.L. and Ho, S.H. (1999). Bioactivity of the essential oil extracted from Evodia rutaecarpa Hook f. et Thomas against the grain storage insects, Sitophilus zeamais Motsch and Tribolium castaneum (Herbst). J. Stored Prod. Res. 35(4): 317-328. doi: 10.1016/S0022-474X(99)00015-6
  • Zhao, N.N., Zhou, L.G., Liu, Z.L., Du, S.S. and Deng, Z.W. (2012). Evaluation of the toxicity of the essential oils of some common Chinese spices against Liposcelis bostrychophila. Food Control. 26(2): 486-490. doi: 10.1016/j.foodcont.2012.02.021
  • Sakuma, M. (1998). Probit analysis of preference data. Appl. Entomol. Zool. 33(3): 339-247. doi: 10.1303/aez.33.339
  • Tak, J.-H., Jovel, E. and Isman, M.B. (2017). Synergistic interactions among the major constituents of lemongrass essential oil against larvae and an ovarian cell line of the cabbage looper, Trichoplusia ni. Journal of Pest Science. 90(2): 735-744. doi: 10.1007/s10340-016-0827-7
  • Woerdenbag, H.J., Windono, T., Bos, R., Riswan, S. and Quax, W.J. (2004). Composition of the essential oils of Kaempferia rotunda L. and Kaempferia angustifolia Roscoe rhizomes from Indonesia. Flavour Frag. J. 19(2): 145-148. doi: 10.1002/ffj.1284
  • Stevenson, P.C., Veitch, N.C. and Simmonds, M.S.J. (2007). Polyoxygenated cyclohexane derivatives and other consti-tuents from Kaempferia rotunda L. Phyto-chemistry. 68(11): 1579-1586.
  • Sirat, H.M., Jamil, S. and Siew, L.W. (2005). The rhizome oil of Kaempferia rotunda Val. J. Essent. Oil Res. 17(3): 306-307. doi: 10.1080/10412905.2005.9698911
  • Liu, X.C., Liang, Y., Shi, W.P., Liu, Q.Z., Zhou, L. and Liu, Z.L. (2014). Repellent and Insecticidal Effects of the Essential Oil of Kaempferia galanga Rhizomes to Liposcelis bostrychophila (Psocoptera: Liposcelidae). J. Econ. Entomol. 107(4): 1706-1712. doi: 10.1603/EC13491
  • Giner, M., Avilla, J., De Zutter, N., Ameye, M., Balcells, M. and Smagghe, G. (2013). Insecticidal and repellent action of allyl esters against Acyrthosiphon pisum (Hemiptera: Aphididae) and Tribolium castaneum (Coleoptera: Tenebrionidae). Ind. Crop. Prod. 47: 63-68. doi: 10.1016/j.indcrop.2013.02.019
  • Pandji, C., Grimm, C., Wray, V., Witte, L. and Proksch, P. (1993). Insecticidal Constituents From 4 Species of the Zingi-beraceae. Phytochemistry. 34(2): 415-419. doi: 10.1016/0031-9422(93)80020-S
  • Kiran, S., Kujur, A., Patel, L., Rama-lakshmi, K. and Prakash, B. (2017). Assessment of toxicity and biochemical mechanisms underlying the insecticidal activity of chemically characterized Boswellia carterii essential oil against insect pest of legume seeds. Pestic. Biochem. Phys. 139: 17-23. doi: 10.1016/j.pestbp.2017.04.004
  • Chen, Z.Y., Pang, X., Guo, S.S., Zhang, W.J., Geng, Z.F., Zhang, Z., Du, S.S. and Deng, Z.W. (2019). Chemical Composition and Bioactivities of Alpinia Katsumadai Hayata Seed Essential Oil against Three Stored Product Insects. J. Essent. Oil Bear. Plants. 22(2): 504-515. doi: 10.1080/0972060X.2019.1611482
  • Caballero-Gallardo, K., Olivero-Verbel, J. and Stashenko, E.E. (2011). Repellent Activity of Essential Oils and Some of Their Individual Constituents against Tribolium castaneum Herbst. J. Agr. Food Chem. 59(5): 1690-1696. doi: 10.1021/jf103937p
  • Feng, Y.X., Wang, Y., Chen, Z.Y., Guo, S.S., You, C.X. and Du, S.S. (2019). Efficacy of bornyl acetate and camphene from Valeriana officinalis essential oil against two storage insects. Environ. Sci. Pollut. R. 26(16): 16157-65. doi: 10.1007/s11356-019-05035-y
  • Cao, Y., Benelli, G., Germinara, G.S., Maggi, F., Zhang, Y., Luo, S., Yang, H. and Li, C. (2019). Innate positive chemotaxis to paeonal from highly attractive Chinese medicinal herbs in the cigarette beetle, Lasioderma serricorne. Sci. Rep-UK. 9.
  • Liu, S., Forrest, J. and Yang, Y. (2013). Advances in Grey Systems Research. J. Grey Syst. 25(2): 1-18.
  • Liu, S., Forrest, J. and Vallee, R. (2009). Emergence and development of grey systems theory. Kybernetes. 38(7-8): 1246-1256. doi: 10.1108/03684920910976943
  • Guo, R., Lu, Z., Wu, Q. and Liu, Y. (2014). Study on Technical Process for Crop Grey Breeding. J. Grey Syst. 26(2): 11-19.
  • Zhao, D. and Guo, J. (2002). Application of Gray System Theory to Integrated Evaluation on New Combinations of Chinese cabbage. Guizhou Agr. Sci. 30(6): 17-19.
  • Weiping, L.O.U., Haiyan, C. and Rui, W.U. (2011). Risk analysis of agricultural drought disaster based on grey-fuzzy theory. J. Nat. Disasters. 20(4): 90-94.
  • Carmona, D., Lajeunesse, M.J. and Johnson, M.T.J. (2011). Plant traits that predict resistance to herbivores. Funct. Ecol. 25(2): 358-367. doi: 10.1111/j.1365-2435.2010.01794.x
  • Pavela, R. (2015). Acute toxicity and synergistic and antagonistic effects of the aromatic compounds of some essential oils against Culex quinquefasciatus Say larvae. Parasitol. Res. 114(10): 3835-3853. doi: 10.1007/s00436-015-4614-9
  • Feng, Y.X., Wang, Y., You, C.X., Guo, S.S., Du, Y.S. and Du, S.S. (2019). Bioactivities of patchoulol and phloroacetophenone from Pogostemon cablin essential oil against three insects. International Int. J. Food Prop. 22(1): 1365-1374. doi: 10.1080/10942912.2019.1648508

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.