53
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Chemical Composition, Synergistic Antimicrobial and Antioxidant Potential of Hibiscus rosa-sinensis L. Leaves Essential Oil and Its Major Compound

, , &
Pages 469-485 | Received 26 Apr 2022, Accepted 03 Jan 2023, Published online: 03 May 2023

References

  • Azimi, L., Talebi, M., Pourshafie, M.R., Owlia, P. and Lari, R.A. (2015). Characterization of carbapenemases in extensively drug resistance Acinetobacter baumannii in a burn care center in Iran. Int. J. Mol. Cell. Med. 4: 46-53.
  • Valentini, M. and Filloux, A. (2016). Biofilms and cyclic di-GMP (c-di-GMP) signaling: lessons from Pseudomonas aeruginosa and other bacteria. J. Biol. Chem. 291: 12547-12555.
  • Batista, B.G., de Chaves, M.A., Reginatto, P., Saraiva, O.J. and Fuentefria, A.M. (2020). Human fusariosis: An emerging infection that is difficult to treat. J. Braz. Soc. Trop. Med. 53: 1-7.
  • Garcia, R.R., Min, Z., Narasimhan, S. and Bhanot, N. (2015). Fusarium brain abscess: case report and literature review. Mycoses. 58: 22-6.
  • Van Diepeningen, A.D., Feng, P., Ahmed, S., Sudhadham, M., Bunyaratavej, S. and de Hoog, G.S. (2015). Spectrum of Fusarium infections in tropical dermatology evidenced by multilocus sequencing typing diagnostics. Mycoses. 58: 48-57
  • Dalhoff, A. (2018). Does the use of anti-fungal agents in agriculture and food foster polyene resistance development? A reason for concern. J. Glob. Antimicrob. Resist. 13: 40-48.
  • Kesharwani, R.K., Misra, K. and Singh, D.B. (2019). Perspectives and challenges of tropical medicinal herbs and modern drug discovery in the current scenario. Asian Pac. J. Trop. Med. 12: 1-7.
  • Woodward, N. (2003). Novel agents for the reatment of resistant gram-positive infections. Expert. Opin. Investig. Drugs. 12: 117-137.
  • Sirajudin, Z.N.M., Ahmed, Q.U., Chowdhury, A.J.K., Kamarudin, E.Z., Khan, A.V., Uddin, A.B. and Musa, M.H.N. (2014). Antimicrobial activity of Banana (Musa paradisiaca L.) peels against food-borne pathogenic microbes. J. Pure Appl. Microbiol. 8: 3627-3639.
  • Schmidt, D., Ribnicky, A., Poulev, S., Logendra, W., Cefalu, I. and Raskin, A. (2008). A natural history of botanical therapeutics. Metab. 57: 3-9.
  • Nisar, B., Sultan, A. and Rubab, S.L. (2017). Comparison of medicinally important natural products versus synthetic drugs-A short commentary. Nat. Prod. Chem. Res. 6: 1-2.
  • Ordonez, A.A.L., Gomez, J.D., Cudmani, N.M., Vattuone, M.A. and Isla, M.A. (2003). Antimicrobial activity of nine extracts of Sechium edule (Jacq.) Swartz. Microb. Ecol. Health Dis. 15: 33-39.
  • Sushma, B.K., Ashalatha, K.S., Ray, P. and Raveesha, H.R. (2020). Histochemical and phytochemical analysis of medicinally important plant. Eur. J. Med. Plants. 30: 1-13.
  • Mancianti, F. and Ebani, V.V. (2020). Bio-logical activity of essential oils. Molecules. 25: 1-4.
  • Tian, M., Wu, X., Hong, Y., Wang, H., Deng, G. and Zhou, Y. (2020). Comparison of chemical composition and bioactivities of essential oils from fresh and dry rhizomes of Zingiber zerumbet (L.) Smith. Biomed. Res. Int. 2020: 1-9.
  • Hemaiswarya, S., Kruthiventi, A.K. and Doble, M. (2008). Synergism between natural products and antibiotics against infectious diseases. Phytomedicine. 45: 639-652.
  • Rassem, H.A.H., Nour, H.A. and Yunus, M.R. (2017). GC/MS analysis of bioactive constituents of Hibiscus flower. Aust. J. Basic Appl. Sci. 11: 91-97.
  • Verma, A.K. and Pratap, R. (2010). The biological potential of flavones. Nat. Prod. Rep. 27: 1571-1593.
  • Jadhav, V.M., Thorat, R.M., Kaddam, V.J. and Sathe, N.S. (2009). Traditional medicinal uses of Hibiscus rosa-sinensis. J. Pharm. Res. 2: 1220-1222.
  • Nath, P. and Yadav, A.K. (2016). Anticestodal properties of Hibiscus rosa-sinensis L. (Malvaceae): an in vitro and in vivo study against Hymenolepis diminuta, a zoonotic tapeworm, J. Parasit. Dis. 40: 1261-1265.
  • Sharma, K., Pareek, A. and Chauhan, E.S. (2016). Evaluation of hyperglycemic and hyperlipidemic mitigating impact of Hibiscus rosa-sinensis (Gudhal) flower in type II diabetes mellitus subjects. Int. J. Appl. Biol. Pharm. 7: 223-228.
  • Upadhyay, S.M., Upadhyay, P., Ghosh, A.K., Singh, V. and Dixit, V.K. (2011). Effect of ethanolic extract of Hibiscus rosa-sinensis L. flowers on hair growth in female wistar rats. Der. Pharm. Lett. 3: 258-263.
  • Kumar, P.K., Annapurna, A., Ramya, G., Sheba, D., Krishna, G. and Sudeepthi, L. (2014). Gastroprotective effect of flower extracts of Hibiscus rosa-sinensis against acute gastric lesion models in rodents. J. Pharmacogn. Phytochem. 3: 137-145.
  • Pethe, M., Yelwatkar, S., Gujar, V., Verma, S. and Manchalwar, S. (2017). Antidiabetic, hypolipidemic and antioxidant activities of Hibiscus rosa-sinensis flower extract in alloxan induced diabetes in rabbits. Int. J. Biomed. Adv. Res. 8: 138-143.
  • Jana, T.K., Das, S., Ray, A., Mandal, D., Giri, S. and Bhattacharya, J. (2013). Study of the effects of Hibiscus rosa-sinensis flower extract on the spermatogenesis of male albino rats. J. Physiol. Pharmacol. Adv. 3: 167-171.
  • Kumari, O.S., Rao, N.B. and Reddy, V.K. (2015). Phyto-chemical analysis and anti-microbial activity of Hibiscus rosa-sinensis. World J. Pharm. Pharm. Sci. 4: 766-771.
  • Sumathy, R. and Sankaranarayanan, S. (2013). Evaluation of antioxidant and anti-microbial activity of flavonoid-rich fraction of two Indian medicinal plants. Int. J. Ethnomed. Pharmacol. Res. 1: 7-14.
  • Mak, Y.W., Chuah, L.O., Ahmad, R. and Bhat, R. (2013). Antioxidant and anti-bacterial activities of Hibiscus (Hibiscus rosa-sinensis L.) and Cassia (Senna bicap-sularis L.) flower extracts. J. King Saud. Univ. Sci. 25: 275-282.
  • Agarwal, S. and Prakash, R. (2013). Essential oil composition of solvent extract of Hibiscus rosa-sinensis flower. Orient. J. Chem. 29: 813-814.
  • Kaur, J. and Kaushal, S. (2020). Chemical Analysis, antimicrobial and antioxidant activities of Harsingar (Nyctanthesar bortris-tis) essential oil. J. Essent. Oil-Bear. Plants. 23: 230-245.
  • Adams, R.P. (2017). Identification of essential oil components by gas chromatography-mass spectrometry, ed. 4.1. Allured Publishing Corp., Carol Stream, IL, USA.
  • De Zoysa, M.H.N., Rathnayake, H., Hewawasam, R.P. and Wijayaratne, W.M.D.G.B. (2019). Determination of in vitro antimicrobial activity of five Sri Lankan medicinal plants against selected human pathogenic bacteria. Intl. J. Microbiol. 2019: Article ID 7431439, 8 pages
  • Ghatage, S.L., Navale, S.S., Mujawar, N.K., Patil, S. and Patil, V. (2014). Anti-microbial screening. Indian J. Drugs. 2: 84-88.
  • Vu, T.T., Kim, H., Tran, V.K., Vu, H.D., Hoang, T.X., Han, J.W., Choi, Y.S., Jang, K.S., Choi, G.J., Kim, J.C. (2017). Antibacterial activity of tannins isolated from Sapium baccatum extract and use for control of tomato bacterial wilt. PLoS ONE 12(7): e0181499.
  • Sledz, W., Los, E., Paczek, A., Rischka, J., Motyka, A., Zoledowska, S., Piosik, J., Lojkowska, E (2015). Antibacterial activity of caffeine against plant pathogenic bacteria. Acta. Biochimica. Polonica. 62: 605-612.
  • Chikezie, I.O. (2017). Determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) using a novel dilution tube method. Afr. J. Microbiol. Res. 11: 977-980.
  • Balouiri, M., Sadiki, M. and Ibnsouda, S.K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 6: 71-79.
  • Murray, P.R., Baron, E.J., Pfaller, M.A., Tenover, F.C. and Yolke, R.H. (1995). Manual of Clinical Microbiology, vol X, 6th edn. American Society for Microbiology, Washington.
  • Morace, G., Drago, M., Scaltrito, M.M., Conti, S., Fanti, F. and Polonelli, L. (2007). In vitro activity (MIC and MFC) of voriconazole, amphotericin B, and itraconazole against 192 filamentous fungi: The GISIA-2 study. J. Chemother. 19: 508-513.
  • Bassole, I.H.N. and Juliani, H.R. (2012). Essential oils in combination and their antimicrobial properties. Molecules. 17: 3989-4006.
  • Aktumseka, A., Zengina, G., Gulerb, G.O., Cakmakc, Y.S. and Durana, A. (2013). Antioxidant potentials and anticholinesterase activities of methanolic and aqueous extracts of three endemic Centaurea L. species. Food Chem.Toxicol. 55: 290-296.
  • Green, L.C., Wagner, D.A., Glogowski, J., Skipper, P.L., Wishnok, J.S. and Tannenbaum, S.R. (1982). Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal. Biochem.126: 131-138.
  • Nenadis, N., Wang, L.F., Tsimidou, M. and Zhang, H.Y. (2004). Estimation of scavenging activity of phenolic compounds using the ABTS (*+) assay. J. Agric. Food Chem. 52: 4669-4674.
  • Kobaisy, M., Tellez, M.R., Webber, C.L., Dayan, F.E., Schrader, K.K. and Wedge, D.E. (2001). Phytotoxic and fungitoxic acti-vities of the essential oil of Kenaf (Hibiscus cannabinusL.) leaves and its composition. J. Agric. Food Chem. 49: 3768-3771.
  • Zellagui, A., Gherraf, N., Ladjel, S. and Hameurlaine, S. (2012). Chemical composition and antibacterial activity of the essential oils from Launaea resedifolia. L. Org. Med. Chem. Lett. 2: 1-4.
  • Vismayaviswan, T.K., Dharani, J., Sripathi, R. and Ravi, S. (2018). Compo-sition of the essential oil from Mimosa pudica Linn. Asian J. Pharm. Clin. Res. 12: 170-172.
  • Romeh, A.A. (2013). Diethyl phthalate and dioctyl phthalate in Plantago major L. Afr. J. Agri. Res. 8: 4360-4364.
  • El-Sayed, O.H., Asker, M., Shash, S. and Hamed, S.R. (2015). Isolation, structure elucidation and biological activity of Di-(2-ethylhexyl) phthalate produced by Penicillium janthinellum. Int. J. Chem. Tech. Res. 8: 58-66.
  • Akarca, G. (2019). Composition and antibacterial effect on food borne pathogens of Hibiscus surrattensis L. calyces essential oil. Ind. Crops Prod. 137: 285-289.
  • Habib, M.R. and Karim, M.R. (2009). Antimicrobial and cytotoxic activity of Di-(2-ethylhexyl) phthalate and anhydrosophoradiol-3-acetate isolated from Calotropis gihantea (Linn.) flower. Mycobiol. 37: 31-36.
  • Fadipe, L.A., Haruna, K. and Ilyas, M. (2014). Antibacterial activity of 1,2-Benzenedicarboxylic acid, Dioctyl ester isolated from the ethyl acetate-soluble sub-portion of the unripe fruits of Nauclea latifolia. Int. J. Pure Appl. Biosci. 2: 223-230.
  • Holetz, F.B., Pessini, G.L., Sanches, N.R., Cortez, D.A., Nakamura, C.V. and Filho, B.P. (2002). Screening of some plants used in the Brazilian folk medicine for the treatment of infectious diseases. Mem. Inst. Oswaldo Cruz. 97: 1027-1031.
  • Nkanwen, E.R., Gatsing, D., Ngamga, D. and Fodouop, P. (2009). Tane. Antibacterial agents from the leaves of Crinum purpura-scens herb (Amaryllidaceae). Afr. Health Sci. 9: 264-269.
  • Mahizan, N.A., Yang, S.K., Moo, C.L., Song, A.A.L., Chong, C.M., Chong, C.W., Abushelaibi, A., Lim, S.E. and Lai, K.S. (2019). Terpene derivatives as a potential agent against antimicrobial resistance (AMR) Pathogens. Molecules 24: 1-21.
  • Campana, R., Merli, A., Verboni, M., Biondo, F., Favi, G., Duranti, A. and Lucarini S. (2019). Synthesis and evaluation of saccharide-based aliphatic and aromatic esters as antimicrobial and antibiofilm agents. Pharmaceuticals. 12: 1-19.
  • Skaltsa, H.D., Demetzos, C., Lazari, D. and Sokovic, M. (2003). Essential oil analysis and antimicrobial activity of eight Stachys species from Greece. Phytochem. 64: 743-752.
  • Burt, S. (2004). Essential oils: their anti-bacterial properties and potential applications in foods-a review. Int. J. Food Microbiol. 94: 223-253.
  • Cui, H., Zhang, X., Zhou, H., Zhao, C. and Lin, L. (2015). Antimicrobial activity and mechanisms of Salvia sclarea essential oil. Bot. Stud. 56: 1-8.
  • Nazzaro, F., Fratianni, F., Coppola, R. and De Feo, V. (2017). Essential oils and antifungal activity. Pharma. 10: 1-20.
  • Gomes, M.N., Muratov, E.N., Pereira, M., Peixoto, J.C., Rosseto, L.P., Cravo, P.V.L., Andrade, C.H. and Neves, B.J. (2017). Chalcone derivatives: Promising starting points for drug design. Molecules. 22: 1-25.
  • Nidhi, P., Rolta, R., Kumar, V., Dev, K.A. and Sourirajan, A. (2020). Synergistic potential of Citrus aurantium L. essential oil with antibiotics against Candida albicans. J. Ethnopharmacol. 262: 113135.
  • Langeveld, W.T., Edwin, J.A.V. and Sara, A.B. (2013). Synergy between essential oil components and antibiotics: A review. Crit. Rev. Microbiol. 1-19.
  • Draa, L.A., Brahima, M.A.S., Boualyb, B., Aghraza, A., Barakatec, M., Oubaassined, S. and Markouka, M. (2017). Chemical composition, antioxidant and evidence antimicrobial synergistic effects of Periploca laevigata essential oil with conventional antibiotics Mustapha Larhsini. Ind. Crops Prod. 109: 746-752.
  • Ilic, B.S., Branislava, D.K., Vojislav, M.C., Olga, G.C. and Dragoljub, L.M. (2014). An in vitro synergistic interaction of combinations of Thymus glabrescens essential oil and its main constituents with chloramphenicol. Sci. World J. 2014: 1-12.
  • Elhidara, N., Nafisa, A., Kasratic, A., Goehlerb, A., Bohnertb, J.A., Abbadc, A., Hassania, L. and Mezrioui, N.E. (2019). Chemical composition, antimicrobial acti-vities and synergistic effects of essential oil from Senecio anteuphorbium, a Moroccan endemic plant. Ind. Crops Prod. 310-315.
  • Sharma, K., Guleriaa, S., Razdanb, V.K. and Babu, V. (2020). Synergistic, antioxidant and antimicrobial activities of essential oils of some selected medicinal plants in combination and with synthetic compounds. Ind. Crops Prod. 154: 1-20.
  • Prasad, M.P. (2014). In vitro phytochemical analysis and antioxidant studies of Hibiscus species. Int. J. Pure Appl. Biosci. 2: 83-88.
  • Shabaan, M., Abd-Alla, H.I., Hassan, A.Z., Aly, H.F. and Ghani, M.A. (2012). Chemical characterization, antioxidant and inhibitory effects of some marine sponges against carbohydrate metabolizing enzymes. Org. Med. Chem. Lett. 2: 1-12.
  • Miguel, M.G. (2010). Antioxidant and anti-inflammatory activities of essential oils: A short review. Molecules.15: 9252-9287.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.