81
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Comparative Analysis of Volatile Terpenoids Composition in Lavender Leaves in Response to Gamma Irradiation and Anticancer Effect of α-Santalene against Prostate Cancer

, , , , &
Pages 244-252 | Received 17 Aug 2022, Accepted 19 Apr 2023, Published online: 11 Jun 2023

References

  • Gil, M., Pontin, M., Berli, F., Bottini, R. and Piccoli, P. (2012). Metabolism of terpenes in the response of grape (Vitis vinifera L.) leaf tissues to UV-B radiation. Phytochemistry. 77: 89-98. doi: 10.1016/j.phytochem.2011.12.011
  • Lee, G.W., Lee, S., Chung, M.-S., Jeong, Y.S. and Chung, B.Y. (2015). Rice tepene synthase 20 (OsTPS20) plays an important role in producing terpene volatiles in response to abiotic stresses. Protoplasma. 252(4): 997-1007. doi: 10.1007/s00709-014-0735-8
  • Tholl, D. (2006). Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr. Opin. Plant Biol. 9(3): 297-304. doi: 10.1016/j.pbi.2006.03.014
  • Chen, F., Tholl, D., Bohlmann, J. and Pichersky, E. (2011). The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J. 66(1): 212-229. doi: 10.1111/j.1365-313X.2011.04520.x
  • Lichtenthaler, H.K. (1999). The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 47-65. doi: 10.1146/annurev.arplant.50.1.47
  • Newman, J.D. and Chappell, J. (1999). Isoprenoid biosynthesis in plants: carbon partitioning within the cytoplasmic pathway. Crit. Rev. Biochem. Mol. Biol. 34(2): 95-106. doi: 10.1080/10409239991209228
  • Tholl, D. and Lee, S. (2011). Terpene specialized metabolism in Arabidopsis thaliana. Arabidopsis Book. 9: e0143. doi: 10.1199/tab.0143
  • Lee, G.W., Chung, M.-S., Kang, M., Chung, B.Y. and Lee, S. (2016). Direct suppression of a rice bacterial blight (Xanthomonas oryzae pv. oryzae) by monoterpene (S)-limonene. Protoplasma. 253(3): 683-690. doi: 10.1007/s00709-015-0904-4
  • Croteau, R., Ketchum, R.E., Long, R.M., Kaspera, R. and Wildung, M.R. (2006). Taxol biosynthesis and molecular genetics. Phytochem. Rev. 5(1): 75-97. doi: 10.1007/s11101-005-3748-2
  • Pollier, J., Moses, T. and Goossens, A. (2011). Combinatorial biosynthesis in plants: a review on its potential and future exploitation. Nat. Prod. Rep. 28(12): 1897-1916. doi: 10.1039/c1np00049g
  • Yamashita, S., Yamaguchi, H., Waki, T., Aoki, Y., Mizuno, M., Yanbe, F., Ishii, T., Funaki, A., Tozawa, Y., Miyagi-Inoue, Y., Fushihara, K., Nakayama, T. and Takahashi, S. (2016). Identification and reconstitution of the rubber biosynthetic machinery on rubber particles from Hevea brasiliensis. Elife. 5: e19022. doi: 10.7554/eLife.19022
  • Meziane-Assami, D., Tomao, V., Ruiz, K., Meklati, B.Y. and Chemat, F. (2013). Geographical differentiation of rosemary based on GC/MS and fast HPLC analyses. Food Anal. Methods. 6(1): 282-288. doi: 10.1007/s12161-012-9430-6
  • Medicherla, K., Ketkar, A., Sahu, B.D., Sudhakar, G. and Sistla, R. (2016). Rosmarinus officinalis L. extract ameliorates intestinal inflammation through MAPKs/NF-κB signaling in a murine model of acute experimental colitis. Food Funct. 7(7): 3233-3243. doi: 10.1039/C6FO00244G
  • Borrás-Linares, I., Pérez-Sánchez, A., Lozano-Sánchez, J., Barrajón-Catalán, E., Arráez-Román, D., Cifuentes, A., Micol, V. and Carretero, A.S. (2015). A bioguided identification of the active compounds that contribute to the antiproliferative/cytotoxic effects of rosemary extract on colon cancer cells. Food Chem. Toxicol. 80: 215-222. doi: 10.1016/j.fct.2015.03.013
  • Raskovic, A., Milanovic, I., Pavlovic, N., Milijasevic, B., Ubavic, M. and Mikov, M. (2015). Analgesic effects of rosemary essential oil and its interactions with codeine and paracetamol in mice. Eur. Rev. Med. Pharmacol. Sci. 19(1): 165-172.
  • Li, Z., Gan, Y., Kang, T., Zhao, Y., Huang, T., Chen, Y., Liu, J. and Ke, B. (2023). Camphor Attenuates Hyperalgesia in Neuro-pathic Pain Models in Mice. J. Pain Res. 16: 785-795. doi: 10.2147/JPR.S398607
  • Chung, M.-S., Lee, G.W., Lee, S.S., Chung, B.Y. and Lee, S. (2020). Comparative Analysis of Volatile Terpenoids Composition in Rosemary Leaves in Response to Ionizing Radiation. J. Essent. Oil Bear. Plants. 23(3): 594-600. doi: 10.1080/0972060X.2020.1782775
  • Mahendran, G. and Rahman, L.-U. (2020). Ethnomedicinal, phytochemical and pharmacological updates on Peppermint (Mentha × piperita L.)-A review. Phytother. Res. 34(9): 2088-2139. doi: 10.1002/ptr.6664
  • Torki-Harchegani, M., Ghasemi Pirbalouti, A. and Ghanbarian, D. (2018). Influence of Microwave Power on Drying Kinetic, Chemical Composition and Antioxidant Capacity of Peppermint Leaves. J. Essent. Oil Bear. Plants. 21(2): 430-439. doi: 10.1080/0972060X.2018.1444512
  • Lau, B.K., Karim, S., Goodchild, A.K., Vaughan, C.W. and Drew, G.M. (2014). Menthol enhances phasic and tonic GABAA receptor-mediated currents in midbrain peria-queductal grey neurons. Br. J. Pharmacol. 171(11): 2803-2813. doi: 10.1111/bph.12602
  • Kim, S.-Y., Han, S.-D., Kim, M., Mony, T.J., Lee, E.-S., Kim, K.-M., Choi, S.-H., Hong, S.H., Choi, J.W. and Park, S.J. (2021). Mentha arvensis essential oil exerts anti-inflammatory in LPS-stimulated inflammatory responses via inhibition of ERK/NF-κB signaling pathway and anti-atopic dermatitis-like effects in 2, 4-dinitrochlorobezene-induced BALB/c mice. Antioxidants. 10(12): 1941. doi: 10.3390/antiox10121941
  • Chen, T.Y., Hiyama, A., Muramatsu, M. and Hinotsu, A. (2022). The Effect of Lavender on Sleep Quality in Individuals Without Insomnia: A Systematic Review. Holist. Nurs. Pract. 36(4): 223-231. doi: 10.1097/HNP.0000000000000528
  • Malcolm, B.J. and Tallian, K. (2017). Essential oil of lavender in anxiety disorders: Ready for prime time? Ment. Health Clin. 7(4): 147-155. doi: 10.9740/mhc.2017.07.147
  • Dakhlaoui, S., Wannes, W.A., Sari, H., Hmida, M.B., Frouja, O., Limam, H., Tammar, S., Bachkouel, S., Jemaa, M.B., Jallouli, S., Hessini, K. and Msaada, K. (2022). Combined Effect of Essential Oils from Lavender (Lavandula officinalis L.) Aerial Parts and Coriander (Coriandrum sativum L.) Seeds on Antioxidant, Anti-diabetic, Anti-cancer and Anti-inflammatory Activities. J. Essent. Oil Bear. Plants. 25(1): 188-199. doi: 10.1080/0972060X.2022.2049892
  • Allen, H.D. (2009). Vegetation and eco-system dynamics. In: The physical geography of the Mediterranean. Woodward, J. (ed.), Oxford University Press, pp. 203-227.
  • Shen, S.-d., Cui, C.-x., Quan, J.-s. and Shen, M.-h. (2009). Study on antitumor effect of Lavender angustifolia extract. Food Sci. Technol. 2: 213-215.
  • Grandi, S., Biffi, S., Vecchi, A. and Barbanti, L. (2016). Assessing Essential Oil Composition of Various Lamiaceae Accessions in View of Most Suitable Uses. J. Essent. Oil Bear. Plants. 19(6): 1351-1367. doi: 10.1080/0972060X.2016.1205958
  • Adaszyńska-Skwirzyńska, M. and Dzieciol, M. (2018). Comparison of Chemical composition and Antimicrobial Activity of Essential Oils Obtained from Different Cultivars and Morphological Parts of Lavandula angustifolia. J. Essent. Oil Bear. Plants. 21(6): 1532-1541. doi: 10.1080/0972060X.2018.1526123
  • Babushok, V.I., Linstrom, P.J. and Zenkevich, I.G. (2011). Retention Indices for Frequently Reported Compounds of Plant Essential Oils. J. Phys. Chem. Ref. Data. 40: 043101. doi: 10.1063/1.3653552
  • Carmichael, J., DeGraff, W.G., Gazdar, A.F., Minna, J.D. and Mitchell, J.B. (1987). Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res. 47(4): 936-942.
  • Norusis, M.J. (2010). PASW Statistics 18 Guide to Data Analysis. Prentice Hall Press, New Jersey.
  • Da Porto, C., Decorti, D. and Kikic, I. (2009). Flavour compounds of Lavandula angustifolia L. to use in food manufacturing: Comparison of three different extraction methods. Food Chem. 112(4): 1072-1078. doi: 10.1016/j.foodchem.2008.07.015
  • Zhao, Y., Chen, R., Wang, Y., Qing, C., Wang, W. and Yang, Y. (2017). In vitro and In vivo Efficacy Studies of Lavender angustifolia Essential Oil and Its Active Constituents on the Proliferation of Human Prostate Cancer. Integr. Cancer Ther. 16(2): 215-226. doi: 10.1177/1534735416645408

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.