54
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Chemical composition and synergistic antifungal potential of Nigella sativa L. seeds and Syzygium aromaticum (L.) Merr. & L.M. Perry buds essential oils and their major compounds, and associated molecular docking studies

, , , , &
Pages 602-625 | Received 14 Mar 2023, Accepted 26 May 2023, Published online: 09 Jul 2023

References

  • Fletcher, J., Bender, C., Budowle, B., Cobb, W.T., Gold, S.E., Ishimaru, C.A., Luster, D., Melcher, U., Murch, R., Scherm, H., Seem, R.C., Sherwood, J.L., Sobral, B.W. and Tolin, S.A. (2006). Plant pathogen forensics: capabilities, needs, and recommendations. Microbiol. Mol. Biol. Rev. 70: 450-471.
  • Da Rocha, M.E.B., Freire, F.C.O., Erlan, F.M.F., Izabel, F.G. and Rondina, D. (2014). Mycotoxins and their effects on human and animal health. Food Cont. 36: 159-165.
  • Dianez, F., Santos, M., Carretero, F. and Marin, F. (2015). Trichoderma saturnisporum, a new biological control agent. J. Sci. Food and Agric. 96: 1934-44.
  • Ghannoum, M.A. and Rice, L.B. (1999). Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin. Microbiol. Rev. 12: 501-517.
  • Omar, M.S. and Kordali, S. (2019). Review of essential oils as antifungal agents for plant fungal diseases. Ziraat. Fakultesi. Dergisi. 14: 294-301.
  • Raveau, R., Fontaine, J. and Lounes-Hadj Sahraoui, A. (2020). Essential oils as potential alternative biocontrol products against plant pathogens and weeds: A Review. Foods. 9: 365-372.
  • Bassole, I.H.N. and Juliani, H.R. (2012). Essential oils in combination and their antimicrobial properties. Molecules 17: 3989-4006.
  • Aguilar-Gonzalez, A.E., Palou, E. and López-Malo (2015). Antifungal activity of essential oils of clove (Syzygium aromaticum) and/or mustard (Brassica nigra) in vapor phase against gray mold (Botrytis cinerea) in strawberries. Innov. Food. Sci. Emerg. Technol. 32: 181-185.
  • Whitman, W.B., Rainey, F. and Kampfer, P. (2015). Bergey’s manual of systematics of Archaea and Bacteria. Wiley, Chichester. pp 1-7.
  • Adebayo-Tayo, B.C., Briggs-Kamara, A.I. and Salaam, A.M. (2021). Phytochemical composition, antioxidant, antimicrobial potential and GC-MS analysis of crude and partitioned fractions of Nigella sativa seed extract. Acta. Microbiol. Bulg. 37: 34-45.
  • Pournajafian, M., Naseri, A., Fata, A., Rakhshandeh, A. and Afzal-Aghaee, H. (2021). The antifungal effects of hydroalcoholic extracts of Nigella sativa and Urtica dioica on fungal agents in comparison with amphotericin B. J. Isfahan. Med. Sch. 39: 198-205.
  • Arif, P.L., Saqib, S., Mubashir, H., Malik, M., Mukhtar, S.I., Saqib, A., Ullah, S. and Show, S. (2021). Comparison of Nigella sativa and Trachyspermum ammi via experimental investigation and biotechnological potential. Chem. Eng. Process. Intensif. 161: 1-7.
  • Hamini-Kadar, N., Hamdane, F., Boutoutaou, R., Kihal, M. and Henni, J.E (2014). Antifungal activity of clove (Syzygium aromaticum L.) essential oil against phytopathogenic fungi of tomato (Solanum lycopersicum L.) in Algeria. J. Expt. Biol. Agric. Sci. 2: 447-454.
  • Sameza, M.L., Mabou, L.C.N., Tchameni, S.N., Bedine, M.A.B., Tchoumbougnang. F., Dongmo, P.M.J. and Fekam, F.B. (2015). Evaluation of clove essential oil as a mycobiocide against Rhizopus stolonifer and Fusarium solani, Tuber Rot Causing Fungi in Yam (Dioscorea rotundata Poir.). J. Phytopathol. 164: 433-440.
  • Yang, W., Chen, X., Li, Y., Guo, S., Wang, Z. and Yu, X. (2020). Advances in pharmacological activities of terpenoids. Nat. Prod. Commun. 15: 1-13.
  • Otero, C., Arredondo, C., Echeverría-Vega, A. and Gordillo-Fuenzalida, F. (2020). Penicillium spp. mycotoxins found in food and feed and their health effects. World Mycotoxin J. 13: 323-343.
  • Dean, R., Vankan, J.A.L., Pretorius, Z.A., Hammond-Kosack, K.E., Di Pietro, A., Spanu, P.D., Rudd, J.J., Dickman, M., Kahmann, R., Ellis, J. and Foster, G.D. (2012). The top 10 fungal pathogens in molecular plant pathology: Top 10 fungal pathogens. Mol. Plant Path. 13: 414-30.
  • Anderson, J.M., Aitken, E.A.B., Dann, E.K. and Coates, L.M. (2012). Morphological and molecular diversity of Colletotrichum spp. causing pepper spot and anthracnose of lychee (Litchi chinensis) in Australia. Plant Path. 62: 279-288.
  • Cob-Calan, N.N., Chi-Uluac, L.A., Ortiz-Chi, F., Cerqueda-García, D., Navarrete-Vázquez, G., Ruiz-Sánchez, E. and Hernández-Núñez, E. (2019). Molecular docking and dynamics simulation of protein β-tubulin and antifungal cyclic lipopeptides. Molecules. 24: 3387-3396.
  • Guarnaccia, V., Groenewald, J.Z., Polizzi, G. and Crous, P.W. (2017). High species diversity in Colletotrichum associated with citrus diseases in Europe. Pers-Mol. Phylogeny Evol. Fungi. 39: 32-50.
  • Amin, M.J., Miana, G.A., Rashid, U., Rahman, K.M., Khan, H. and Sadiq, A. (2020). SAR based in vitro anticholinesterase and molecular docking studies of nitrogenous progesterone derivatives. Steroids. 12: 1-11.
  • Adams, R.P. (2007). Identification of Essential Oil Components by Gas Chromatography/mass Spectrometry (4th ed). Allured Publishing Corporation, Carol Stream, IL, U.S.A.
  • Shahbazi, Y. and Shavisi, N. (2016). Interactions of Ziziphora clinopodioides and Mentha spicata essential oils with chitosan and ciprofloxacin against common food-related pathogens Food Sci. Technol. 71: 364-69
  • Benharref, A., Dil, R.F., Hanbali, F.E., Zeroual, A., Dakir, M. and Mazoir, N. (2017). A new monoterpene isolated from Nigella sativa essential oil. Nat. Prod. Comm. 12: 881-882
  • Grover, R.K. and Moore, J.D. (1969). In vitro efficacy of certain essential oils and plant extracts against three major pathogens of Jatropha curcas L. Am. J. Plant Sci. 52: 876-879.
  • Hili, P., Evans, C.S. and Veness, R.G. (1997) Antimicrobial action of essential oils: the effect of dimethylsulphoxide on the activity of cinnamon oil. Lett. Appl. Microbiol. 4: 269-75.
  • Murray, P.R., Baron, E.J., Pfaller, M.A., Tenover, F.C. and Yolke, R.H. (1995). Manual of Clinical Microbiology, Vol X, 6th ed. American Society of Microbiology, Washington. pp 625-626.
  • CLSI. (2008). Reference method for broth dilution antifungal susceptibility testing of filamentous fungi; approved standard. Clin. Lab. Standard Inst, Wyne. 28:1-17.
  • Purkait, S., Bhattacharya, A., Bag, A. and Chattopadhyay, R.R. (2020). Synergistic antibacterial, antifungal and antioxidant efficacy of cinnamon and clove essential oils in combination. Arch. Microbiol. 202: 1439-1448.
  • Lowe, J., Li, H., Downing, K.H. and Nogales, E. (2001). Refined structure of α-β -tubulin at 3.5 Å resolution. J. Mol. Biol. 313: 1045-1057.
  • Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S. and Olson, A.J. (2009). Autodock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 16:2785-2791.
  • Gasteiger, J. and Marsili, M. (1980). Iterative Partial Equalization of Orbital Electronegativity -a Rapid Access to Atomic Charges. Tetrahedron. 36: 3219-3228.
  • Santos-Martins, D., Solis-Vasquez, L., Koch, A. and Forli, S. (2021). Accelerating AutoDock4 with GPUs and Gradient-Based Local Search. J. Chem. Theory Comput. 17: 1060-1073.
  • Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K. and Olson, A.J. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 19: 1639-1662.
  • Zeiler, M.D. (2012). ADADELTA: An Adaptive Learning Rate Method. ArXiv. https://doi.org/10.48550/arXiv.1212.5701.
  • Pettersen, E.F., Goddard, T.D., Huang, C.C., Meng, E.C., Couch, G.S., Croll, T.I., Morris, J.H. and Ferrin, T.E. (2021). UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Prot. Sci. 30: 70-82.
  • BIOVIA, Dassault Systemes, (2020). Discovery Studio Client.
  • Venkatachallam, S.K.T., Pattekhan, H., Divakar, H. and Kadimi, U.S. (2010). Chemical composition of Nigella sativa L. seed extracts obtained by supercritical carbon dioxide. J. Food Sci. Technol. 47: 598-605.
  • Abedi, A.S., Rismanchi, M., Shahdoost-khany, M., Mohammadi. A. and Mortazavian, A.M. (2017). Microwave-assisted extraction of Nigella sativa L. essential oil and evaluation of its antioxidant activity. J. Food Sci. Technol. 54: 3779-3790.
  • Alfikri, F.N., Pujiarti, R., Wibisono, M.G. and Hardiyanto, E.B. (2020). Yield, quality and antioxidant activity of clove (Syzygium aromaticum L.) bud oil at the different phenological stages in young and mature trees. Scientifica (Cairo). 2: 1-8.
  • Ben Hassine, D., Kammoun El Euch, S., Rahmani, R., Ghazouani, N., Kane, R,. Abderrabba, M. and Bouajila, J. (2021). Clove Buds Essential Oil: The impact of grinding on the chemical composition and its biological activities involved in consumer's health security. Biomed. Res. Int. 2021: 1-9.
  • Kabir, Y., Akasaka-Hashimoto, Y., Kubota, K. and Komai, M. (2020). Volatile compounds of black cumin (Nigella sativa L.) seeds cultivated in Bangladesh and India. Heliyon. 6: 1-6.
  • Ashfaq, S., Khan, N.T. and Ali, G.M. (2021). Nigella Sativa (Kalonji), Its essential oils and their therapeutic potential. Biomed. J. Sci. Tech. Res. 33: 25448-25454.
  • Shahbazi, Y., Shavisi, N., Karami, N., Lorestani, R. and Dabirian, F. (2021). Electrospun carboxymethyl cellulose-gelatin nanofibrous films encapsulated with Mentha longifolia L. essential oil for active packaging of peeled giant freshwater prawn Food Sci. Technol. 152: 112322
  • Mobina, E., Shavisi, N., Shahbazi, Y. and Dabirian, F. (2021). Active packaging based on sodium caseinate-gelatin nanofiber mats encapsulated with Mentha spicata L. essential oil and MgO nanoparticles: Preparation, properties, and food application Food Packag. Shelf Life. 29(1): 100737
  • Wu, Z., Li, H., Yang, Y., Zhan, Y. and Tu, D. (2013). Variation in the components and antioxidant activity of Citrus medica L var sarcodactylis essential oils at different stages of maturity. Ind. Crops and Prod. 46: 311-316.
  • Dera, A.A., Ahmad, I., Rajagopalan, P., Shahrani, M.A., Saif, A., Alshahrani, M.Y., Alraey, Y., Alamri, A.M., Alasmari, S., Makkawi, M., Alkhathami, A.G., Zaman, G., Hakami, A., Alhefzi, R. and Alfhili, M.A. (2021). Synergistic efficacies of thymoquinone and standard antibiotics against multi-drug resistant isolates. Saudi Med. J. 42: 196-204.
  • Dagtas, A.S. and Griffin, R.J. (2021). Nigella sativa extract kills pre-malignant and malignant oral squamous cell carcinoma cells. J. Herb. Med. 29: 1-13.
  • Haro-Gonzalez, J.N., Castillo-Herrera, G.A., Martínez-Velázquez, M. and Espinosa-Andrews, H. (2021). Clove essential oil (Syzygium aromaticum L. Myrtaceae): Extraction, chemical composition, food applications and essential bioactivity for human health. Molecules 26: 6387-6395.
  • Kaur, K., Kaushal, S. and Rani, R. (2019). Antioxidant and antifungal potential of clove (Syzygium aromaticum) essential oil, its major compound and its derivatives. J. Essent. Oil-Bear. Plants. 22: 1195-1217.
  • Devi, K.P., Nisha, S.A., Sakthivel, R. and Pandian, S.K. (2010). Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. J. Ethnopharmacol. 130: 107-115.
  • Onifade, A.A., Jewell, A.P. and Adedeji, W.A. (2013). Nigella sativa concoction induced sustained seroreversion in HIV patient. Afr. J. Tradit. Compl. Altern. Med. 10: 332-335.
  • Nirmala, M.J., Durai, L., Gopakumar, V. and Nagarajan, R. (2019). Anticancer and antibacterial effects of a clove bud essential oil-based nanoscale emulsion system. Int. J. Nanomed. 14: 6439-6450.
  • Tanase, C., Archa, C.S. and Lucia, D. (2019). A critical review of phenolic compounds extracted from the bark of woody vascular plants and their potential biological activity. Molecules. 1182: 1-18.
  • Yang, W., Chen, X., Li, Y., Guo, S., Wang, Z. and Yu, X. (2020). Advances in pharmacological activities of terpenoids. Nat. Prod. Commun. 15: 1-13.
  • Pohl, C., Kock, J. and Thibane, V. (2011). Antifungal free fatty acids: A review. Sci. Against Microbial Pathog: Commun. Curr. Res. Tech. Adv. 14: 61-71.
  • Mahmoud, V., Sepah, H., Jahanbakhsh, A., Ezatpour, S. and Ayatollahi Mousavi, B.S.A. (2014). Evaluation of antifungal activities of the essential oil and various extracts of Nigella sativa and its main component, thymoquinone against patho-genic dermatophyte strains. J. Myco. Med. 24: 155-161.
  • Zouirech, O., Alyousef, A.A., El Barnossi, A., El Moussaoui, A., Bourhia, M., Salamatullah, A.M., Ouahmane, L., Giesy, J.P., Aboul-Soud, M.A.M. and Lyoussi, B.E. (2022). Phytochemical analysis and antioxidant, antibacterial, and antifungal effects of essential oil of black caraway (Nigella sativa L.) seeds against drug-resistant clinically pathogenic microorganisms. Biomed. Res. Int. 26: 1-11.
  • Akhtar, N., Alakloby, O.M., Aljabre, S.H.M., Alqurashi, A.R.M. and Randhawa, M.A. (2007). Comparison of antifungal activity of thymoquinone and amphotericin B against Fusarium solani in vitro. Sci. J. King Faisal. Univ. 8: 1428-1440.
  • Taha, M., Abdel Azeiz, A.Z. and Saudi, W. (2010). Antifungal effect of thymol, thymoquinone and thymohydroquinone against yeasts, dermatophytes and non-dermatophyte molds isolated from skin and nails fungal infections. Egypt J. Biochem. Mol. Biol. 28: 109-126.
  • Elsharkawy, E.R., Abdallah, E.M. and Markb, A.A. (2021). Potential cytotoxic, antifungal and antioxidant activity of dithymoquinone and thymoquinone. J. Hunan Uni. Nat. Sci. 48: 90-99
  • Moosavi-Nasab, M., Jamalian, J., Heshmati, H. and Haghighi-Manesh, S. (2017). The inhibitory potential of Zataria multiflora and Syzygium aromaticum essential oil on growth and aflatoxin production by Aspergillus flavus in culture media and Iranian white cheese. Food Sci. Nut. 6: 318-324.
  • Pinto, E., Vale-Silva, L., Cavaleiro, C. and Salgueiro, L. (2009). Antifungal activity of the clove essential oil from Syzygium aromaticum on Candida, Aspergillus and dermatophyte species. J. Med. Microbiol. 58: 1454-1462.
  • Campaniello, D., Corbo, M.R. and Sinigaglia, M. (2010). Antifungal activity of eugenol against Penicillium, Aspergillus, and Fusarium Species. J. Food Prot. 73: 1124-1128.
  • Helal, G.A., Sarhan, M.M., Abu Shahla, A.N.K. and Abou El-Khair, E.K. (2006). Effects of Cymbopogon citratus L. essential oil on the growth, lipid content and morphogenesis of Aspergillus niger ML2-strain. J. Basic. Microbiol. 46: 456-469.
  • Hyldgaard, M., Mygind, T. and Meyer, R.L. (2012). Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Front. Microbiol. 3: 1-24.
  • Rasooli, I., Rezaei, M.B. and Allameh, A. (2006). Growth inhibition and morphological alterations of Aspergillus niger by essential oils from Thymus eriocalyx and Thymus x-porlock. Food Cont. 17: 359-364.
  • Soylu, E.M., Soylu, S. and Kurt, S. (2006). Antimicrobial activities of the essential oils of various plants against tomato late blight disease agent Phytophthora infestans. Mycopathologia. 161: 119-128.
  • Wang, C., Zhang, J., Chen, H., Fan, H. and Shi, Z. (2010). Antifungal activity of eugenol against Botrytis cinerea. Trop. Plant Pathol. 35: 137-143.
  • Farag, R.S., Daw, Z.Y., Hewedi, F.M. and El-Baroty, G.S.A. (1989). Antimicrobial activity of some egyptian spice essential oils. J. Food Prot. 52: 665-667.
  • Almshawit, H. and Macreadie, I. (2017). Fungicidal effect of thymoquinone involves generation of oxidative stress in Candida glabrata. Microbiol. Res. 195: 81-88.
  • Ahmad, Z., Laughlin, T.F. and Kady, I.O. (2015). Thymoquinone inhibits Escherichia coli ATP synthase and cell growth. PLoS One. 10: 1-12.
  • Chatterji, B.P., Jindal, B., Srivastava, S. and Panda, D. (2011). Microtubules as antifungal and antiparasitic drug targets. Expert Opin. Therap. Patent. 21: 167-186.
  • Carlson, R.O. (2008). New tubulin targeting agents currently in clinical development. Expert Opin. Investig. Drugs. 17: 707-722.
  • Keeling, P.J. and Doolittle, W.F. (1996). Alpha-tubulin from early-diverging euk-aryotic lineages and the evolution of the tubulin family. Mol. Biol. Evol. 13: 1297-1305.
  • Lacey, E. (1988). The role of the cytoskeletal protein, tubulin, in the mode of action and mechanism of drug resistance to benzimidazoles. Int. J. Parasitol. 18: 885-936.
  • Downing, K.H. (2000). Structural Basis for the interaction of tubulin with proteins and drugs that affect microtubule dynamics. Annu. Rev. Cell. Dev. Biol. 16: 89-111.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.