69
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A study on the chemical profile of cultivated chamomile (Matricaria chamomilla L.) flower essential oil from North East India with special emphasis on its pharmacological importance

, , , , , & show all
Pages 745-760 | Received 06 Jun 2023, Accepted 18 Jul 2023, Published online: 22 Aug 2023

References

  • Lal, M., Begum, T., Gogoi, R., Sarma, N., Munda, S., Pandey, S.K., Baruah, J., Tamang, R., and Saikia, S. (2022). Anethole rich Clausena heptaphylla (Roxb.) Wight & Arn., essential oil pharmacology and genotoxic efficiencies. Sc. Rep. 12(1): 9978. doi: 10.1038/s41598-022-13511-8
  • Gogoi, R., Begum, T., Sarma, N., Pandey, S.K., Bhandari, S., Saikia, S., Tamang, R., Saikia, R., and Lal, M. (2022). Elemicin-rich Cymbopogon khasianus (Hack) Stapf (ex Bor) essential oil: pharmacological effects, toxicological investigation, and compositional analysis. Current. Analyt. Chem. 8(10): 1092-1107. doi: 10.2174/1573411018666220615140804
  • Orav, A., Raal, A. and Arak, E. (2010). Content and composition of the essentials oil of Chamomilla recucita (L.) Rauschert, Nat. Prod. Res. 24(1): 48-55. doi: 10.1080/14786410802560690
  • Singh, O., Khanam, Z., Misra, N., and Srivastava, M.K. (2010). Chamomile (Matricaria chamomilla): An overview, Pharmacogn Rev. 5(9): 82-95. doi: 10.4103/0973-7847.79103
  • McKay, D.L. and Blumberg, J.B. (2006). A review of the bioactivity and potential health benefits of chamomile tea (Matricaria recutita L.), Phytother. Res. 20(7): 519-530. doi: 10.1002/ptr.1900
  • Stanojevic, L.P., Marjanovic-Balaban, Z.R., Kalaba, V.D., Stanojevic, J.S. and Cvetkovic, D.J. (2016). Chemical compo-sition, antioxidant and antimicrobial activity of chamomile flowers essential oil (Matricaria chamomilla L.). J. Essent. Oil Bear. Plants. 19(8): 2017-2028. doi: 10.1080/0972060X.2016.1224689
  • Caillet, S., Salmiéri, S. and Lacroix, M. (2006). Evaluation of free radical-scavenging properties of commercial grape phenol extracts by a fast colorimetric method. Food Chem. 95(1): 1-8. doi: 10.1016/j.foodchem.2004.12.011
  • Jovanovic, A.A., Zundic, G.M., Šavikin, K.P., Cujic, N., Bukara, K., Levic, S. and Bugarski, B.M. (2015). Antioxidant activity of ethanolic extracts of Thymus serpyllum. IV International Congress of Engineering, Environment and Materials in Processing Industry. 444-452.
  • Gogoi, R., Loying, R., Sarma, N., Begum, T., Pandey, S.K. and Lal, M. (2020). Comparative analysis of in-vitrobiological activities of Methyl Eugenol Rich Cymbo-pogon khasianus Hack., leaf essential oil with pure methyl eugenol compound. Current. Pharm. Biotechnol. 21(10): 927-938. doi: 10.2174/1389201021666200217113921
  • Lis-Balchin, M., Deans, S.G., and Eaglesham, E. (1998). Relationship between bioactivity and chemical composition of commercial essential oils. Flav. Frag J. 13: 98-104. doi: 10.1002/(SICI)1099-1026(199803/04)13:2<98::AID-FFJ705>3.0.CO;2-B
  • Begum, T., Gogoi, R., Sarma, N., Pandey, S.K. and Lal, M. (2022). Direct sunlight and partial shading alter the quality, quantity, biochemical activities of Kaempferia parviflora Wall., ex Baker rhizome essential oil: A high industrially important species. Ind. Crops Prod. 180:114765. doi: 10.1016/j.indcrop.2022.114765
  • Begum, T., Gogoi, R., Sarma, N., Pandey, S.K. and Lal, M. (2023). Novel ethyl p-methoxy cinnamate rich Kaempferia galanga (L.) essential oil and its pharmacological applications: special emphasis on anticholine-sterase, anti-tyrosinase, α-amylase inhibitory, and genotoxic efficiencies. Peer J. 11: e14606https://doi.org/10.7717/peerj.14606.
  • Gogoi, R., Sarma, N., Begum, T., Chanda, S.K., Lekhak, H., Sastry, G.N. and Lal, M. (2023). Agarwood (Aquilaria malaccensis L.) a quality fragrant and medicinally significant plant based essential oil with pharmacological potentials and genotoxicity. Ind. Crops Prod. 197: 116535. doi: 10.1016/j.indcrop.2023.116535
  • Gogoi, R., Loying, R., Sarma, N., Munda, S., Pandey, S.K. and Lal, M. (2018). A comparative study on antioxidant, anti-inflammatory, genotoxicity, anti-microbial activities and chemical composition of fruit and leaf essential oils of Litsea cubeba Pers from North-east India. Ind. Crops Prod. 125: 131-139. doi: 10.1016/j.indcrop.2018.08.052
  • Rafael, L., Teresinha, N., Moritz, J.C., Maria, I.G., Eduardo, M.D. and Tania, S.F. (2009). Evaluation of antimicrobial and antiplatelet aggregation effects of Solidago chilensis Meyen. Int. J. Green Pharm. https://doi.org/10.4103/0973-8258.49372.
  • Noumi, E., Snoussi, M., Alreshidi, M.M., Rekha, P.D., Saptami, K., Caputo, L. and De Feo, V. (2018). Chemical and biological evaluation of essential oils from cardamom species. Molecules. 23(11): 2818. doi: 10.3390/molecules23112818
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. and Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 26: 1231-1237 doi: 10.1016/S0891-5849(98)00315-3
  • Kunitz, M. (1947). Crystalline soybean trypsin inhibitor: II. General properties. J. Gen. Physiol. 30(4): 291-310. doi: 10.1085/jgp.30.4.291
  • Xiao, Z., Storms, R. and Tsang, A. (2006). A quantitative starch-iodine method for measuring alpha-amylase and glucoamylase activities. Anal. Biochem. 351: 146-148. doi: 10.1016/j.ab.2006.01.036
  • Ellman, G.L., Courtney, K.D., Andres, V. and Featherstone, R.M. (1961). A new and rapid colorimetric determination of acetyl-cholinesterase activity. Biochem. Pharmacol. 7: 88-95. doi: 10.1016/0006-2952(61)90145-9
  • Babatunde, B.B. and Bakare, A.A. (2006). Genotoxicity screening of waste waters from Agbara industrial estate Nigeria evaluated with the Allium test. Pollut. Res. 25: 227–234.
  • Fiskesjo, G. (1985). The Allium test as a standard in environmental monitoring. Hereditas. 102: 99-112. doi: 10.1111/j.1601-5223.1985.tb00471.x
  • Bakare, A.A., Mosuro, A.A. and Osibanjo, O. (2000). Effect of simulated leachate on chromosomes and mitosis in roots of Allium cepa (L). J. Environ. Biol. 21: 263–271.
  • Fiskesjo, G. (1997). Allium test for screen-ing chemicals; evaluation of cytologic parameters. In W. Wang, J. W. Gorsuch, & J. S. Hughes (Eds.), Plants for environmental studies (pp. 308-333). CRC Lewis Publishers.
  • Šavikin, K., Menković, N., Ristić, M., Arsić, I., Zdunić, G., Đorđević, S. and Pljevljakušić, D. (2011). Quality testing of chamomile essential oil Chamomilla recutita (L.) Rausch., variety Banatska, in comparison to requirements of the european pharmacopoeia and ISO STANDARD. Lekovite sirovine. 31: 55-65.
  • Pirzad, A., Alyari, H., Shakiba, M.R., Zehtab-Salmasi, S. and Mohammadi, A. (2006). Essential oil content and composition of German chamomile (Matricaria chamo-milla L.) at different irrigation regimes. J. Agron. 5(3): 451-455. doi: 10.3923/ja.2006.451.455
  • Fadel, H.H.M., El-Ghorab, A.H., Hussein, A.M., El-Massry, K.F., Lotfy, S.N., Ahmed, M.Y.S., and Soliman, T.N. (2020). Correlation between chemical compo-sition and radical scavenging activity of 10 commercial essential oils: Impact of microencapsulation on functional properties of essential oils. Arab. J. Chem. 13(8): 6815-6827.
  • Roby, M.H.H., Sarhan, M.A., Selim, K.A.H. and Khalel, K.I. (2013). Antioxidant and antimicrobial activities of essential oil and extracts of fennel (Foeniculum vulgare L.) and chamomile (Matricaria chamomilla L.). Ind. Crops Prod. 44: 437-445. doi: 10.1016/j.indcrop.2012.10.012
  • Mekonnen, A., Yitayew, B., Tesema, A. and Taddese, S. (2016). In vitro antimicrobial activity of essential oil of Thymus schimperi, Matricaria chamomilla, Eucalyptus globu-lus, and Rosmarinus officinalis. Int. J. Micro-biol. 1-8.
  • Forrer, M., Kulik, E.M., Filippi, A. and Waltimo, T. (2013). The antimicrobial activity of alpha-bisabolol and tea tree oil against Solobacterium moorei, a Gram-positive bacterium associated with halitosis. Arch. Oral Biol. 58(1): 10-16. doi: 10.1016/j.archoralbio.2012.08.001
  • Rodrigues, F.F.G., Colares, A.V., Nonato, C.D.F.A., Galvão-Rodrigues, F.F., Mota, M.L., Braga, M.F.B.M. and da Costa, J.G.M. (2018). In vitro antimicrobial activity of the essential oil from Vanillosmopsis arborea Barker (Asteraceae) and its major constituent, α-bisabolol. Microb. Pathog. 125: 144-149. doi: 10.1016/j.micpath.2018.09.024
  • Kamatou, G.P. and Viljoen, A.M. (2010). A review of the application and pharma-cological properties of α-bisabolol and α-bisabolol-rich oils. J. Am. Oil Chem. Soc. 87: 1-7. doi: 10.1007/s11746-009-1483-3
  • Sánchez-Moreno, C. (2002). Methods used to evaluate the free radical scavenging acti-vity in foods and biological systems. Food Sci. Technol. Int. 8(3): 121-137. doi: 10.1177/1082013202008003770
  • Capuzzo, A., Occhipinti, A. and Maffei, M.E. (2014). Antioxidant and radical scavenging activities of chamazulene. Nat. Prod. Res. 28(24): 2321-2323. doi: 10.1080/14786419.2014.931393
  • Zengin, G., Mollica, A., Arsenijević, J., Pavlić, B., Zeković, Z., Sinan, K.I. and Ražić, S. (2022). A Comparative study of chamomile essential oils and lipophilic extracts obtained by conventional and greener extraction techniques: chemometric approach to chemical composition and bio-logical activity. Separations. 10(1): 18. doi: 10.3390/separations10010018
  • Ramazani, and Elham. (2022). Pharma-cological and biological effects of alpha-bisabolol: An updated review of the molecular mechanisms. Life Sciences. 304: 120728. doi: 10.1016/j.lfs.2022.120728
  • Firat, Z., Demirci, F. and Demirci, B. (2018). Antioxidant activity of chamomile essential oil and main components. Nat. Volatil Essent. Oils. 5(1): 11-16.
  • Safahyi, H., Sabieraj, J., Sailer, E.R. and Ammon, H.P.T. (1994). Chamazulene: an antioxidant-type inhibitor of leukotriene B4 formation. Planta Medica. 60: 410-413. doi: 10.1055/s-2006-959520
  • Conforti, F., Loizzo, M.R., Statti, G.A. and Menichini, F. (2005). Comparative Radical Scavenging and Antidiabetic Activities of Methanolic Extract and Fractions from Achillea ligustica ALL. Biol. Pharm. Bull. 28: 1791-1794. doi: 10.1248/bpb.28.1791
  • Sadiq, A., Rashid, U., Ahmad, S., Zahoor, M., AlAjmi, M.F., Ullah, R., Noman, O.M., Ullah, F., Ayaz, M., Khan, I. and Islam, Z.U. (2020). Treating hyperglycemia from Eryngium caeruleum M. Bieb: In-vitro α-glucosidase, antioxidant, in-vivo antidiabetic and molecular docking-based approaches. Front. Chem. 8: 558641. doi: 10.3389/fchem.2020.558641
  • Villa-Rodriguez, J.A., Kerimi, A., Abranko, L., Williamson, G. (2015). Chemomile (Matricaria chamomilla) extract and Its major polyphenols Inhibit Intestinal α-Glycosidases in vitro. FASEB J. 29: LB323. doi: 10.1096/fasebj.29.1_supplement.lb323
  • Najla, O.A., Olfat, A.K., Kholoud, S.R., Enas, N.D., and Hanan, S.A. (2012). Hypoglycemic and biochemical effects of Matricaria chamomilla leave extract in streptozotocin-induced diabetic rats. J Health Sci. 2(5): 43-48.
  • Jeyakumar, M., Sathya, S., Gandhi, S., Tharra, P., Suryanarayanan, V., Singh, S.K. and Devi, K.P. (2019). α-bisabolol β-D-fucopyranoside as a potential modulator of β-amyloid peptide induced neurotoxicity: An in vitro & in silico study. Bioorg. Chem. 88: 102935. doi: 10.1016/j.bioorg.2019.102935

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.