15
Views
0
CrossRef citations to date
0
Altmetric
Rapid Communication

Essential oil analysis of Rhaponticum repens (L.) Hidalgo, and its application in green synthesis of iron nanoparticles to remove Cr (VI) ions from aqueous solutions

, &
Pages 756-769 | Received 12 Jan 2024, Accepted 20 Apr 2024, Published online: 27 May 2024

References

  • Gaskin, J.F. and Littlefield, J.L. (2017). Invasive Russian Knapweed (Acroptilon repens) creates large patches almost entirely by rhizomic growth. Invas. Plant Sci. Mana. 10: 119-124. doi: 10.1017/inp.2017.9
  • Hidalgo, O., Garcia-Jacas, N., Garnatje, T. and Susanna, A. (2006). Phylogeny of Rhaponticum (Asteraceae, Cardueae-Centaureinae) and related genera inferred from nuclear and chloroplast DNA sequence data: Taxonomic and biogeographic implications. Ann. Bot. 97: 705-14. doi: 10.1093/aob/mcl029
  • Watson, A.K. (1980). The biology of Canadian weeds, Acroptilon repens (L.) DC, Can. J. Plant Sci. 60: 993-1004.
  • Koloren, O., Uygur, S., Bozdoğan, O., Uygur, N. and Schaffner, U. (2008). Density and dynamics of Acroptilon Repens L., patches in Turkey. Pak. J. Bot. 40: 2265-2271.
  • Mirza, M., Shahmir, F. and Baher Nik, Z. (2005). Chemical composition of essential oil from Acroptilon repens (L.) DC. Flavour Fragr. J. 20: 615-616. doi: 10.1002/ffj.1501
  • Tunalier, Z., Candan, N.T., Demirci B. and Husnu Can Baser, K. (2006). The essential oil composition of Acroptilon repens (L.) DC. of Turkish origin. Flavour Fragr. J. 21: 462-464. doi: 10.1002/ffj.1670
  • Razavi, S.M., Narouei, M., Majrohi, A.A., and Mohammaddust, H.R. (2012). Chemical constituents and phytotoxic activity of the essential oil of Acroptilon repens (L.) Dc from Iran. J. Essent. Oil-Bear. Plants. 15(6): 943-948. doi: 10.1080/0972060X.2012.10662597
  • Firooziyan, S., Osanloo, M., Moosa-Kazemi, S., Basseri, H.R., Hajipirloo, H., Sadaghianifar, A., Amani, A. and Sedaghat, M.M. (2021). Preparation of a nanoemulsion of essential oil of Acroptilon repens plant and evaluation of its larvicidal activity agianst malaria vector, Anopheles stephensi. J. Arthropod. Borne Dis. 15: 335-348.
  • Zarenezhad, E., Sanei-Dehkordi, A., Babaalizadeh, B., Qasmei, H. and Osanloo, M. (2023). Repellent efficacy of the nanogel containing Acroptilon repens essential oil in comparison with DEET against Anopheles stephensi. BMC Res. Notes. 16: 261. doi: 10.1186/s13104-023-06538-1
  • Jain, P.L., Patel, S.R. and Desai, M.A. (2022). Patchouli oil: An overview on extraction method, composition and biological activities. J. Essent. Oil Res. 34: 1-11. doi: 10.1080/10412905.2021.1955761
  • Wang, W., Wang, X. and Wang, X. (2013). Cr (VI) removal from aqueous solution with bamboo charcoal chemically modified by iron and cobalt with the assistance of microwave. J. Environ. Sci. 25: 1726-1735. doi: 10.1016/S1001-0742(12)60247-2
  • Nethaji, S. and Sivasamy, A. (2014). Removal of hexavalent chromium from aqueous solution using activated carbon prepared from walnut shell biomass through alkali impregnation processes. Clean Technol. Environ. Policy. 16: 361-368. doi: 10.1007/s10098-013-0619-1
  • Talebi, S.M., Askary, M., Amiri, R., Sangi, M.R. and Matsyura, A. (2022). Effects of nanoparticles treatments and salinity stress on the genetic structure and physiological characteristics of Lavandula angustifolia Mill. Braz. J. Biol. 82. doi: 10.1590/1519-6984.261571
  • Wq, W. My, L.. and Qx, Z.. (2012). Thermodynamics of Cr (VI) adsorption on strong alkaline anion exchange fiber. Trans. Nonferrous Met. Soc. China. 22: 2831-2839. doi: 10.1016/S1003-6326(11)61539-2
  • Bagheri, A.R., Aramesh, N., Saquib Hasnain, M.d., Nayak, A.K. and Varma, R.S. (2023). Greener fabrication of metal nanoparticles using plant materials: A review. Chem. Phys. 7: 100255.
  • Sana, S.S., Li, H., Zhang, Z., Sharma, M., Usmani, Z., Hou, T., Netala, V.R., Wang, X. and Gupta, V.K. (2021). Recent advances in essential oils-based metal nanoparticles: A review on recent developments and biopharmaceutical applications. J. Mol. Liq. 333: 115951. doi: 10.1016/j.molliq.2021.115951
  • Ossa-Paredes, R., Bastidas, B. and Carvajal-Barriga, E.J. (2022). Remediation of contaminated water with chromium VI by sorption in surface-activated-nanocellulose spheroids. Pollution. 8: 489-500.
  • Bhattacharya, S., Saha, I., Mukhopadhyay, A., Chattopadhyay, D. and Chand, U. (2013). Role of nanotechnology in water treatment and purification: potential applications and implications. Int. J. Chem. Sci. Technol. 3: 59-64.
  • Nabati souha, L., Alebrahim, M.T., Habibi Yangjeh, A. and Feizpoor, S. (2022). Green synthesis of chitosan nanoparticles by extract of aerial organs of Russian knapweed (Acroptilon repens L.). Razi Journal of Medical Sciences Iran University of Medical Sciences. 28: 35-47.
  • Nabati souha, L., Alebrahim, M.T., Habibi Yangjeh, A. and Feizpoor, S. (2022). Green synthesis of iron oxide nanoparticles (Fe3O4) by extract of aerial organs of Russian knapweed (Acroptilon repens L.). Cellular and Molecular Reserch. 35: 640-654.
  • Behdad, R., Mirzaie, A. and Zare Karizi, S. (2017). Green synthesis of silver nanoparticle using Acroptilon repens extract and evaluation of its anti-efflux activity against Acinetobacter bumanni Clinical Isolates, Journal of Microbial World,. 10: 210-221.
  • Afrouz, M., Ahmadi-Nouraldinvand, F., Elias, S.G., Alebrahim, M.T., Tseng, T.M. and Zahedian, H. (2023). Green synthesis of spermine coated iron nanoparticles and its effect on biochemical properties of Rosmarinus officinalis. Sci. Rep. 13: 775. doi: 10.1038/s41598-023-27844-5
  • Golmohammadi, M., Hassankiadeh, M.N. and Zhang, L. (2021). Facile biosynthesis of SnO2/ZnO nanocomposite using Acroptilon repens flower extract and evaluation of their photocatalytic activity. Ceram. Int. 47: 29303-29308. doi: 10.1016/j.ceramint.2021.07.095
  • Golmohammadi, M., Hassankiadeh, M.N., AlHammadi, A. and Elkamel A. (2023). Fabrication of green synthesized SnO2-ZnO/Bentonite nanocomposite for photocatalytic degradation of organic dyes. J. Clust. Sci. 34: 2275-2286 doi: 10.1007/s10876-022-02379-3
  • Ali, B., Shahid, I., Aamer, S., Muhammad Imran, B., Muhammad, S., Muhammad, W., Ghulam, S. and Abdul, J. (2017). Green synthesis of ultrafine super-paramagnetic magnetite nano-fluid: a magnetic and dielectric study. Chem. Pap. 71: 1445-1451. doi: 10.1007/s11696-017-0138-3
  • Rechinger, K.H. (1980). Acroptilon. In: K. H. Rechinger (ed.), Flora Iranica. (Flora des Iranischen Hochlandes und der Umrahmenden Gebirge Persien, Afghanistan, teile von West-Pakistan, Nord-Iraq, Azerbaidjan, Turkmenistan.). Compositae III - Cynareae. Vol. 139B: 308–311. Akademische Druck- u. Verlagsanstalt.
  • British pharmacopoeia. (1988). Vol. 2, London: HMSO; p. A137-A138.
  • Yuan, Y., Huang, M., Pang, Y.X., Yu, F.L., Chen, C., Liu, L.W., Chen, Z.X., Zhang, Y.B., Chen, X.L. and Hu, X. (2016). Variations in essential oil yield, composition, and antioxidant activity of different plant organs from Blumea balsamifera (L.) DC. at different growth times. Molecules. 21: 1024.
  • Adams, R.P. (1995). Identification of essential oil components by gas chromatography/mass spectroscopy, Allured Publishing Corporation, IIIinoise.
  • Swigar, A.A. (1981). Silverstein RM. Monoterpenes. Infrared, mass, 1H-NMR, 13C-NMR spectra and Kovats indices. Wisconsin: Aldrich Chemical Company Inc. p. 1-121.
  • Davies, N.W. (1990). Gas chromatographic retention indices of monoterpenes and sesquiterpenes on methyl silicon and Carbowax 20M phases. J. Chromatogr. A, 503: 1-24. doi: 10.1016/S0021-9673(01)81487-4
  • Dev, S. (1982). CRC Handbook of terpenoids-Monoterpenoids, CRC Press.
  • Bibi, I., Nazar, N., Ata, S. and Sultan, M. (2019). Green synthesis of iron oxide nanoparticles using pomegranate seeds extract and photocatalytic activity evaluation for the degradation of textile dye. J. Mater. Res. Technol. 8: 6115-6124. doi: 10.1016/j.jmrt.2019.10.006
  • Andrade-Zavaleta, K., Chacon-Laiza, Y., Asmat-Campos, D. and Raquel-Checca, N. (2022). Green synthesis of superparamagnetic iron oxide nanoparticles with eucalyptus globulus extract and their application in the removal of heavy metals from agricultural soil. Molecules. 27: 1367. doi: 10.3390/molecules27041367
  • Monshi, A., Foroughi, M.R. and Monshi, M. (2012). Modified scherrer equation to estimate more accurately nano-crystallite size using XRD. World Journal of Nano Science and Engineering. 2: 154-160. doi: 10.4236/wjnse.2012.23020
  • Sanchez-Hachair, A. and Hofmann, A. (2018). Hexavalent chromium quantification in solution: Comparing direct UV-visible spectrometry with 1,5-diphenylcarbazide colorimetry. C. R. Chim. 21: 890: 896.
  • Yu, H., Zhang, B., Bulin, C., Li, R. and Xing, R. (2016). High-efficient synthesis of graphene oxide based on improved hummers method. Sci. Rep. 6: 36143. doi: 10.1038/srep36143
  • Saleh, T.A. (2018). Simultaneous adsorptive desulfurization of diesel fuel over bimetallic nanoparticles loaded on activated carbon. J. Clean. Prod. 172: 2123-2132. doi: 10.1016/j.jclepro.2017.11.208
  • Talebi, S.M., Nohooji, M.G. and Yarmohammadi, M. (2017). Infraspecific variations in essential oil compositions of Nepeta fissa from Iran. Nus. Biosci. 9: 318-321. doi: 10.13057/nusbiosci/n090313
  • Norouzi-Arasi, H., Yavari, I., Chalabian, F., Kiarostami, V., Ghaffarzadeh, F. and Nasirian, A. (2006). Chemical constituents and antimicrobial activities of the essential oil of Acroptilon repens (L.) DC. Flavour Fragr. J. 21: 247-249. doi: 10.1002/ffj.1568
  • Chizzola, R. (2013). Regular monoterpenes and sesquiterpenes (essential Oils). In: Ramawat, K. Mérillon, J.M. (eds) Natural Products. Springer, Berlin, pp. 2973-3008
  • Talebi, S.M., Nohooji, M.G., Yarmohammadi, M., Khani, M. and Matsyura, A. (2019). Effect of altitude on essential oil composition and on glandular trichome density in three Nepeta species (N. sessilifolia, N. heliotropifolia and N. fissa). Mediterr. Bot. 40: 81-93. doi: 10.5209/MBOT.59730
  • Talebi, S.M., Naser, A. and Ghorbanpour, M. (2024). Chemical composition and antimicrobial activity of the essential oils in different populations of Coriandrum sativum L. (coriander) from Iran and Iraq. Food Sci. Nutr. 1-11.
  • Farahmandjou, M. and Soflaee, F. (2015). Synthesis and characterization of α-Fe2O3 nanoparticles by simple co-precipitation method. Phys. Chem. Res. 3: 191-196.
  • Azizi, A. (2022). Green synthesis of Fe3O4 nanoparticles and its application in preparation of Fe3O4/Cellulose magnetic nanocomposite: A suitable proposal for drug delivery systems. Journal of Inorganic and Organometallic Polymers and Materials. 102: 2379-2393.
  • Davarnejad, R., Azizi, A., Mohammadi, M. and Mansoori, S. (2020). A green technique for synthesising iron oxide nanoparticles by extract of Centaurea cyanus plant: an optimised adsorption process for methylene blue. Int. J. Environ. Anal. 30: 3552-3561.
  • Ying, S.H., Guan, Z., Ofoegbu, P.C., Clubb, P., Rico, C., He, F. and Hong, J. (2022). Green synthesis of nanoparticles: Current developments and limitations. Environ. Technol. Innov. 26: 102336.
  • Goutam, S.P., Saxena, G., Singh, V., Yadav, A.K., Bharagava, R.N. and Thapa, K.B. (2018). Green synthesis of TiO2 nanoparticles using leaf extract of Jatropha curcas L. for photocatalytic degradation of tannery wastewater. Chem. Eng. J. 336: 396-386. doi: 10.1016/j.cej.2017.12.029
  • Sethy, N.K., Arif, Z., Mishra, P.K. and Kumar, P. (2020). Green synthesis of TiO2 nanoparticles from Syzygium cumini extract for photo-catalytic removal of lead (Pb) in explosive industrial wastewater. Green Processing and Synthesis. 9: 171-181. doi: 10.1515/gps-2020-0018
  • Tauc, J.C. (1972). The optical properties of solids, North Holland, Amsterdam.
  • Gebreslassie, Y.T. and Gebretnsae, H.G. (2021). Green and cost-effective synthesis of tin oxide nanoparticles: A review on the synthesis methodologies, mechanism of formation, and their potential applications. Nanoscale Res. Lett. 16: 1-16. doi: 10.1186/s11671-021-03555-6
  • Suresh, K.C., Surendhiran, S., Kumar, P.M., Kumar, E.R., Syed Khadar, Y.A. and Balamurugan, A. (2020). Green synthesis of SnO2 nanoparticles using Delonix elata leaf extract: Evaluation of its structural, optical, morphological and photocatalytic properties. SN Appl. Sci. 2: 1735. doi: 10.1007/s42452-020-03534-z
  • Öztürk, N., Yazar, M., Gündoğdu, A., Duran, C., Şentürk, H.B. and Soylak, M. (2021). Application of cherry laurel seeds activated carbon as a new adsorbent for Cr (VI) removal. Membr. Water Treat. 12: 11-21.
  • Saleh, A. and Gupta, K.W. (2012). Characteri-zation of the chemical bonding between Al2O3 and nanotube in MWCNT/Al2O3 nanocomposite. Curr. Nanosci. 8: 739-743. doi: 10.2174/157341312802884418
  • Babu, B.V. and Suresh Gupta. (2008). Removal of Cr(VI) from wastewater using activated tamarind seeds as an adsorbent. J. Environ. Eng. Sci. 7: 553-557. doi: 10.1139/S08-025
  • Saleh, T.A. (2015). Isotherm, kinetic, and thermodynamic studies on Hg(II) adsorption from aqueous solution by silica-multiwall carbon nanotubes. Environ. Sci. Pollut. Res. Int. 22: 16721-16731. doi: 10.1007/s11356-015-4866-z
  • Basak, A., Ramrakhiani, L., Ghosh, S., Sen, R. and Mandal, A.K. (2018). Preparation of chromium doped phosphate glass adopting microwave irradiation and comparative analysis of properties with conventional glass. J. Non-Cryst. 500: 11-17. doi: 10.1016/j.jnoncrysol.2018.04.014
  • Meng, S., Wang, H., Liu, H., Yang, C., Wei, Y. and Hou, D. (2014). Evaluation of the ability of ferrihydrite to bind heavy metal ions: Based on formation environment, adsorption reversibility and ageing. J. Appl. Geochem. 45: 114-119. doi: 10.1016/j.apgeochem.2014.03.011
  • Lalley, J., Han, C., Li, X., Dionysiou, D.D. and Nadagouda, M.N. (2016). Phosphate adsorption using modified iron oxide-based sorbents in lake water: Kinetics, equilibrium, and column tests. Chem. Eng. J. 284: 1386-1396. doi: 10.1016/j.cej.2015.08.114
  • Ali, I.H., Al Mesfer, M.K., Khan, M.I. and Danish, M. (2019). Exploring adsorption process of lead (II) and chromium (VI) ions from aqueous solutions on acid activated carbon prepared from Juniperus procera leaves. Processes. 7: 1-14.
  • Pakade, V.E., Nchoe, O.B., Hlungwane, L. and Tavengwa, N.T. (2017). Sequestration of hexavalent chromium from aqueous solutions by activated carbon derived from Macadamia nutshells. Water Sci. Technol. 75: 196-206. doi: 10.2166/wst.2016.506
  • Pathan, S.A. and Pandita, N.S. (2016). Nanoporous carbon synthesized from grass for removal and recovery of hexavalent chromium. Carbon Letters. 20: 10-18. doi: 10.5714/CL.2016.20.010
  • Mahvi, A.H., Balarak, D. and Bazrafshan, E. (2023). Remarkable reusability of magnetic Fe3O4-graphene oxide composite: a highly effective adsorbent for Cr (VI) ions. Int. J. Environ. Anal. 103: 3501-3521. doi: 10.1080/03067319.2021.1910250
  • Ozdes, D., Gundogdu, A., Kemer, B., Duran, C., Kucuk, M. and Soylak, M. (2014). Assessment of kinetics, thermodynamics and equilibrium parameters of Cr(VI) biosorption onto Pinus brutia Ten. Can. J. Chem. Eng. 92: 139-147. doi: 10.1002/cjce.21820
  • Dupont, L. and Guillon, E. (2003). Removal of hexavalent chromium with a lignocellulosic substrate extracted from wheat bran. Environ. Sci. Technol. 37: 4235-4241. doi: 10.1021/es0342345
  • Ni, C., Liu, S., Wang, H., Liu, H. and Chen R. (2017). Studies on adsorption characteristics of Al-free and Al-substituted goethite for heavy metal ion Cr(VI). Wat. Air and Soil Poll. 228: 40. doi: 10.1007/s11270-016-3164-9
  • Yan, L., Guo, W., Huang, B., Chen, Y., Ren, X., Shen, Y., Zhou, Y., Cheng, R., Zhang, J., Muqing, Q. and Hu, B. (2023). Efficient removal of Cr (VI) by the modified biochar with chitosan schiff base and MnFe2O4 nanoparticles: Adsorption and mechanism analysis. J. Environ. Chem. Eng. 11: 109432. doi: 10.1016/j.jece.2023.109432
  • Masry, B.A., Madbouly, H.A. and Daoud, J.A. (2023). Studies on the potential use of activated carbon from guava seeds (AC-GS) as a prospective sorbent for the removal of Cr(VI) from aqueous acidic medium. Int. J. Environ. Anal. 103: 1-18. doi: 10.1080/03067319.2020.1849662
  • Chauhan, A.K., Kataria, N., Gupta, R. and Garg, V.K. (2023). Biogenic fabrication of ZnO@EC and MgO@EC using Eucalyptus leaf extract for the removal of hexavalent chromium Cr(VI) ions from water. Environ. Sci. Pollut. Res. Int. 30: 124884-124901. doi: 10.1007/s11356-022-24967-6
  • El-Sayed Abdel-Raouf, M., Kamal, R.S., Hegazy, D.E. and Sayed, A. (2023). Gamma irradiation synthesis of carboxymethyl chitosan-nanoclay hydrogel for the removal of Cr(VI) and Pb(II) from aqueous media. Journal of Inorganic and Organometallic Polymers and Materials. 33: 895-913. doi: 10.1007/s10904-023-02543-w
  • Omer, S. and Singh, A. (2023). Synthesis of guar gum-g-coconut husk (SnO2-SiO2) nanocomposite for removal of Cu (II) and Cr (VI) from wastewater. Int. J. Environ. Waste Manag. 31: 481-499. doi: 10.1504/IJEWM.2023.131151
  • Abshirini, Y., Esmaeili, H. and Foroutan, R. (2019). Enhancement removal of Cr (VI) ion using magnetically modified MgO nanoparticles. Mater. Res. Express. 6: 125513. doi: 10.1088/2053-1591/ab56ea
  • Simranjeet Singh, T.S.S.K., Naik, C., Thamaraiselvan, S.K., Behera Pavithra, N., Nath, B., Dwivedi, P., Singh, J. and Ramamurthy, P.C. (2023). Applicability of new sustainable and efficient green metal-based nanoparticles for removal of Cr(VI): Adsorption anti-microbial, and DFT studies. Environ. Pollut. 320: 121105. doi: 10.1016/j.envpol.2023.121105

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.