821
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

An object-based approach for mapping forest structural types based on low-density LiDAR and multispectral imagery

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 443-457 | Received 04 May 2016, Accepted 13 Nov 2016, Published online: 12 Dec 2016

References

  • Andersen HE, McGaughey RJ, Reutebuch SE. 2005. Estimating forest canopy fuel parameters using LIDAR data. Remote Sens Environ. 94:441–449.10.1016/j.rse.2004.10.013
  • Arroyo LA, Healey SP, Cohen WB, Cocero D, Manzanera JA. 2006. Using object-oriented classification and high-resolution imagery to map fuel types in a Mediterranean region. J Geophys Res Biogeosci. 111:2156–2202.
  • Arroyo LA, Pascual C, Manzanera JA. 2008. Fire models and methods to map fuel types: the role of remote sensing. For Ecol Manage. 256:1239–1252.10.1016/j.foreco.2008.06.048
  • Baatz M, Schäpe A. 2000. Multiresolution segmentation: an optimization approach for high quality multi-scale image segmentation. In: Strobl J, Blaschke T, Griesebner G, editors. Angewandte Geographische Informationsverarbeitung XII [Applied geographical information processing]. Heidelberg: Wichmann; p. 12–23.
  • Balaguer A, Ruiz LA, Hermosilla T, Recio JA. 2010. Definition of a comprehensive set of texture semivariogram features and their evaluation for object-oriented image classification. Comput Geosci. 36:231–240.10.1016/j.cageo.2009.05.003
  • Blanchard SD, Jakubowski MK, Kelly M. 2011. Object-based image analysis of downed logs in disturbed forested landscapes using lidar. Remote Sens. 3:2420–2439.10.3390/rs3112420
  • Breiman L. 2001. Random forests. Mach Learn. 45:5–32.10.1023/A:1010933404324
  • Chirici G, Scotti R, Montaghi A, Barbati A, Cartisano R, Lopez G, Marchetti M, McRoberts RE, Olsson H, Corona P. 2013. Stochastic gradient boosting classification trees for forest fuel types mapping through airborne laser scanning and IRS LISS-III imagery. Int J Appl Earth Obs. 25:87–97.10.1016/j.jag.2013.04.006
  • Colditz RR. 2015. An evaluation of different training sample allocation schemes for discrete and continuous land cover classification using decision tree-based algorithms. Remote Sens. 7:9655–9681.10.3390/rs70809655
  • Cortes C, Vapnik V. 1995. Support-vector networks. Mach Learn. 20:273–297.
  • Crespo-Peremarch P, Ruiz LA, Balaguer-Beser A. 2016. A comparative study of regression methods to predict forest structure and canopy fuel variables from LiDAR full-waveform data. Rev Teledetec. 45:27–40.10.4995/raet.2016.4066
  • Dalponte M, Bruzzone L, Gianelle D. 2008. Fusion of hyperspectral and LIDAR remote sensing data for classification of complex forest areas. IEEE Trans Geosc Remote Sens. 46:1416–1427.10.1109/TGRS.2008.916480
  • Dupuy S, Lainé G, Tassin J, Sarrailh JM. 2013. Characterization of the horizontal structure of the tropical forest canopy using object-based LiDAR and multispectral image analysis. Int J Appl Earth Obs. 25:76–86.10.1016/j.jag.2013.04.001
  • Erdody TL, Moskal LM. 2010. Fusion of LiDAR and imagery for estimating forest canopy fuels. Remote Sens Environ. 114:725–737.10.1016/j.rse.2009.11.002
  • Fagan ME, DeFries RS, Sesnie SE, Arroyo-Mora JP, Soto C, Singh A, Townsend PA, Chazdon RL. 2015. Mapping species composition of forests and tree plantations in Northeastern Costa Rica with an integration of hyperspectral and multitemporal landsat imagery. Remote Sens. 7:5660–5696.10.3390/rs70505660
  • Ferraz A, Bretar F, Jacquemoud S, Gonçalves G, Pereira L, Tomé M, Soares P. 2012. 3-D mapping of a multi-layered Mediterranean forest using ALS data. Remote Sens Environ. 121:210–223.10.1016/j.rse.2012.01.020
  • García M, Riaño D, Chuvieco E, Salas J, Danson FM. 2011. Multispectral and LiDAR data fusion for fuel type mapping using Support Vector Machine and decision rules. Remote Sens Environ. 115:1369–1379.10.1016/j.rse.2011.01.017
  • González-Olabarria JR, Rodríguez F, Fernández-Landa A, Mola-Yudego B. 2012. Mapping fire risk in the Model Forest of Urbión (Spain) based on airborne LiDAR measurements. For Ecol Manage. 282:149–156.10.1016/j.foreco.2012.06.056
  • Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. 2009. The WEKA data mining software: an update. ACM SIGKDD Explorations. 11:10–18.10.1145/1656274
  • Haralick RM, Shanmugam K, Dinstein I. 1973. Texture features for image classification. IEEE Trans Syst Man Cibern. SMC-3:610–622.
  • Hastie T, Tibshirani R, Friedman J. 2008. The elements of statistical learning. 2nd ed. New York: Springer.
  • Hellesen T, Matikainen L. 2013. An object-based approach for mapping shrub and tree cover on grassland habitats by use of LiDAR and CIR Orthoimages. Remote Sens. 5:558–583.10.3390/rs5020558
  • Hermosilla T, Ruiz LA, Kazakova AN, Coops NC, Moskal LM. 2014. Estimation of forest structure and canopy fuel parameters from small-footprint full-waveform LiDAR data. Int J Wildl Fire. 23:224–233.10.1071/WF13086
  • Jin H, Stehman SV, Mountrakis G. 2014. Assessing the impact of training simple selection on accuracy of an urban classification: a case study in Denver, Colorado. Int J Remote Sens. 35:2067–2081.
  • Kennaway TA, Helmer EH, Lefsky MA, Brandeis TA, Sherrill KR. 2008. Mapping land cover and estimating forest structure using satellite imagery and coarse resolution lidar in the Virgin Islands. J Appl Remote Sens. 2:23551.
  • Kuhn M, Johnson K. 2013. Applied predictive modeling. New York (NY): Springer Science + Business Media.10.1007/978-1-4614-6849-3
  • Latifi H, Fassnacht F, Koch B. 2012. Forest structure modeling with combined airborne hyperspectral and LiDAR data. Remote Sens Environ. 121:10–25.10.1016/j.rse.2012.01.015
  • Martín-Alcón S, Coll L, De Cáceres M, Guitart L, Cabré M, Just A, González-Olabarría JR. 2015. Combining aerial LiDAR and multispectral imagery to assess postfire regeneration types in a Mediterranean forest. Can J For Res. 45:856–866.10.1139/cjfr-2014-0430
  • McGaughey RJ. 2015. FUSION/LDV: software for LIDAR data analysis and visualization. Seattle (WA): USDA Forest Service, Pacific Northwest Research Station.
  • Mishra NB, Crews KA. 2014. Mapping vegetation morphology types in a dry savanna ecosystem: integrating hierarchical object-based image analysis with random forest. Int J Remote Sens. 35:1175–1198.10.1080/01431161.2013.876120
  • Mutlu M, Popescu SC, Stripling C, Spencer T. 2008. Mapping surface fuel models using lidar and multispectral data fusion for fire behavior. Remote Sens Environ. 112:274–285.10.1016/j.rse.2007.05.005
  • Ørka HO, Næsset E, Bollandsås OM. 2009. Classifying species of individual trees by intensity and structure features derived from airborne laser scanner data. Remote Sens Environ. 113:1163–1174.
  • Parent JR, Volin JC, Civco DL. 2015. A fully-automated approach to land cover mapping with airborne LiDAR and high resolution multispectral imagery in a forested suburban landscape. ISPRS J of Photogram Remote Sens. 104:18–29.10.1016/j.isprsjprs.2015.02.012
  • Popescu SC, Zhao K. 2008. A voxel-based lidar method for estimating crown base height for deciduous and pine trees. Remote Sens Environ. 112:767–781.10.1016/j.rse.2007.06.011
  • Quinlan JR. 1993. C45 programs for machine learning. San Mateo (CA): Morgan Kaufmann.
  • Riaño D, Chuvieco E, Condés S, González-Matesanz J, Ustin SL. 2004. Generation of crown bulk density for Pinus sylvestris L. from lidar. Remote Sens Environ. 92:345–352.
  • Riaño D, Chuvieco E, Ustin SL, Salas J, Rodríguez-Pérez JR, Ribeiro LM, Viegas DX, Moreno JM, Fernández H. 2007. Estimation of shrub height for fuel-type mapping combining airborne LiDAR and Simultaneous color infrared ortho imaging. Int J Wildl Fire. 16:341–348.
  • Riaño D, Meier E, Allgöwer B, Chuvieco E, Ustin SL. 2003. Modeling airborne laser scanning data for the spatial generation of critical forest parameters in fire behavior modeling. Remote Sens Environ. 86:177–186.
  • Rosa MF, Stow DA. 2013. Mapping fuels at the wildland-urban interface using colour ortho-images and LiDAR data. Geocarto Int. 29:570–588.
  • Roth V, Lange T. 2004. Pattern recognition: adaptive feature selection in image segmentation. Berlin: Springer-Verlag; p. 9–17.
  • Ruiz LA, Recio JA, Fernández-Sarría A, Hermosilla T. 2011. A feature extraction software tool for agricultural object-based image analysis. Comput Electron Agric. 76:284–296.10.1016/j.compag.2011.02.007
  • Sullivan AA, McGaughey RJ, Andersen HE, Schiess P. 2009. Object-oriented classification of forest structure from light detection and ranging data for stand mapping. West J Appl For. 24:198–204.
  • Sutton RN, Hall EL. 1972. Texture measures for automatic classification of pulmonary disease. IEEE Trans Comput. C-21:667–676.
  • Valbuena R, Maltamo M, Packalen P. 2016. Classification of forest development stages from national low-density LiDAR datasets: a comparison of machine learning methods. Rev Teledetec. 45:15–25.10.4995/raet.2016.4029
  • Varga TA, Asner GP. 2008. Hyperspectral and LiDAR remote sensing of fire fuels in Hawaii Volcanoes National Park. Ecol Appl. 18:613–623.10.1890/07-1280.1
  • Vohland M, Stoffels J, Hau C, Schüler G. 2007. Remote sensing techniques for forest parameter assessment: multispectral classification and linear spectral mixture analysis. Silva Fenn. 41:441–456.
  • Zhang C, Franklin SE. 2002. Forest structure classification using airborne multispectral image texture and kriging analysis. IEEE Int Geosc Remote Sens Symposium. 4:2522–2524.10.1109/IGARSS.2002.1026598

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.