764
Views
50
CrossRef citations to date
0
Altmetric
Original Articles

Landslide susceptibility mapping using Naïve Bayes and Bayesian network models in Umyeonsan, Korea

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1665-1679 | Received 20 Aug 2018, Accepted 13 Feb 2019, Published online: 16 Apr 2019

References

  • Ada M, San BT. 2018. Comparison of machine-learning techniques for landslide susceptibility mapping using two-level random sampling (2LRS) in Alakir Catchment Area, Antalya, Turkey. Nat Hazards. 90(1):237–263.
  • Althuwaynee OF, Pradhan B, Lee S. 2012. Application of an evidential belief function model in landslide susceptibility mapping. Comput Geosci. 44:120–135.
  • Anthes RA. 1984. Enhancement of convective precipitation by mesoscale variations in vegetative covering in semiarid regions. J Climate Appl Meteor. 23(4):541–554.
  • Beven KJ, Kirkby MJ. 1979. A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d'appel variable de l'hydrologie du bassin versant. Hydrol Sci J. 24(1):43–69.
  • Bhargavi P, Jyothi S. 2009. Applying naive bayes data mining technique for classification of agricultural land soils. Int J Comput Sci Netw Secur. 9:117–122.
  • Böhner J, Selige T. 2006. Spatial prediction of soil attributes using terrain analysis and climate regionalisation. Gottinger Geographische Abhandlungen. 115:13–28.
  • Bui DT, Tuan TA, Klempe H, Pradhan B, Revhaug I. 2016. Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides. 13:361–378.
  • Chen W, Peng J, Hong H, Shahabi H, Pradhan B, Liu J, Zhu A-X, Pei X, Duan Z. 2018a. Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province, China. Sci Total Environ. 626:1121–1135.
  • Chen W, Pourghasemi HR, Kornejady A, Zhang N. 2017a. Landslide spatial modeling: introducing new ensembles of ANN, MaxEnt, and SVM machine learning techniques. Geoderma. 305:314–327.
  • Chen W, Pourghasemi HR, Zhao Z. 2017b. A GIS-based comparative study of Dempster-Shafer, logistic regression and artificial neural network models for landslide susceptibility mapping. Geocarto Int. 32(4):367–385.
  • Chen W, Shahabi H, Shirzadi A, Li T, Guo C, Hong H, Li W, Pan D, Hui J, Ma M. 2018b. A novel ensemble approach of bivariate statistical-based logistic model tree classifier for landslide susceptibility assessment. Geocarto Int. 33(12):1398–1420.
  • Choi J, Oh H-J, Lee H-J, Lee C, Lee S. 2012. Combining landslide susceptibility maps obtained from frequency ratio, logistic regression, and artificial neural network models using ASTER images and GIS. Eng Geol. 124:12–23.
  • Chung C-J, Fabbri AG, Van Westen CJ. 1995. Multivariate regression analysis for landslide hazard zonation. In: Geographical information systems in assessing natural hazards. Dordrecht: Springer. p. 107–133.
  • Conrad O, Bechtel B, Bock M, Dietrich H, Fischer E, Gerlitz L, Wehberg J, Wichmann V, Böhner J. 2015. System for automated geoscientific analyses (SAGA) v. 2.1. 4. Geosci Model Dev. 8(7):1991–2007.
  • Dahal RK, Hasegawa S, Nonomura A, Yamanaka M, Masuda T, Nishino K. 2008. GIS-based weights-of-evidence modelling of rainfall-induced landslides in small catchments for landslide susceptibility mapping. Environ Geol. 54(2):311–324.
  • Devkota KC, Regmi AD, Pourghasemi HR, Yoshida K, Pradhan B, Ryu IC, Dhital MR, Althuwaynee OF. 2013. Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya. Nat Hazards. 65(1):135–165.
  • Dou J, Yamagishi H, Zhu Z, Yunus AP, Chen CW. 2018. TXT-tool 1.081-6.1: a comparative study of the binary logistic regression (BLR) and artificial neural network (ANN) Models for GIS-based spatial predicting landslides at a regional scale. In: Landslide dynamics: ISDR-ICL landslide interactive teaching tools. Dordrecht: Springer. p. 139–151.
  • Feizizadeh B, Roodposhti MS, Blaschke T, Aryal J. 2017. Comparing GIS-based support vector machine kernel functions for landslide susceptibility mapping. Arab J Geosci. 10:122.
  • Gheisari S, Meybodi MR. 2016. Bnc-pso: structure learning of Bayesian networks by particle swarm optimization. Inf Sci. 348:272–289.
  • Han F, Zheng Y. 2018. Joint analysis of input and parametric uncertainties in watershed water quality modeling: a formal Bayesian approach. Adv Water Resour. 116:77–94.
  • Hjerdt K, McDonnell J, Seibert J, Rodhe A. 2004. A new topographic index to quantify downslope controls on local drainage. Water Resour Res. 40:1-6.
  • Hong H, Chen W, Xu C, Youssef AM, Pradhan B, Tien Bui D. 2017. Rainfall-induced landslide susceptibility assessment at the Chongren area (China) using frequency ratio, certainty factor, and index of entropy. Geocarto Int. 32:139–154.
  • Hwang J, Kim T, Kim H, Cho B, Lee S. 2017. Predictive radon potential mapping in groundwater: a case study in Yongin, Korea. Environ Earth Sci. 76:515.
  • Jaafari A, Najafi A, Pourghasemi H, Rezaeian J, Sattarian A. 2014. GIS-based frequency ratio and index of entropy models for landslide susceptibility assessment in the Caspian forest, Northern Iran. Int J Environ Sci Technol. 11(4):909–926.
  • Jones D, Brunsden D, Goudie A. 1983. A preliminary geomorphological assessment of part of the Karakoram Highway. Quart J Eng Geol Hydrogeol. 16(4):331–355.
  • Kim J-C, Lee S, Jung H-S, Lee S. 2018. Landslide susceptibility mapping using random forest and boosted tree models in Pyeong-Chang, Korea. Geocarto Int. 33(9):1000–1015.
  • Korea Forest Service. 2013. 2013 detailed strategy for primary policy. Seoul: Korea Forest Service.
  • Korean Geotechnical Society. 2011. Cause investigation of Umyeonsan landslide and recovery measure establishment service final report. Seoul: Korean Geotechnical Society.
  • Lee J-M. 2004. An efficient algorithm for Naive Bayes with matrix transposition. J KIPS Trans. 11(1):117–124.
  • Lee M-J, Park I, Won J-S, Lee S. 2016. Landslide hazard mapping considering rainfall probability in Inje, Korea. Geomat Nat Hazards Risk. 7(1):424–446.
  • Lee S, Chwae U, Min K. 2002. Landslide susceptibility mapping by correlation between topography and geological structure: the Janghung area, Korea. Geomorphology. 46(3-4):149–162.
  • Lee S, Hong S-M, Jung H-S. 2017. A support vector machine for landslide susceptibility mapping in Gangwon Province, Korea. Sustainability. 9(1):48.
  • Lee S, Lee M-J. 2017. Susceptibility mapping of Umyeonsan using logistic regression (LR) model and post-validation through field investigation. Korean J Remote Sens. 33:1047–1060.
  • Lee S, Lee M-J, Lee S. 2018. Spatial prediction of urban landslide susceptibility based on topographic factors using boosted trees. Environ Earth Sci. 77:656.
  • Lee S, Min K. 2001. Statistical analysis of landslide susceptibility at Yongin, Korea. Environ Geol. 40(9):1095–1113.
  • Lee S, Ryu J-H, Won J-S, Park H-J. 2004. Determination and application of the weights for landslide susceptibility mapping using an artificial neural network. Eng Geol. 71(3-4):289–302.
  • Mezaal MR, Pradhan B. 2018. Data mining-aided automatic landslide detection using airborne laser scanning data in densely forested tropical areas. Korean J Remote Sens. 34:45–74.
  • Moore ID, Grayson R, Ladson A. 1991. Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrol Process. 5(1):3–30.
  • Nami M, Jaafari A, Fallah M, Nabiuni S. 2018. Spatial prediction of wildfire probability in the Hyrcanian ecoregion using evidential belief function model and GIS. Int J Environ Sci Technol. 15(2):373–384.
  • Oh H-J, Kadavi PR, Lee C-W, Lee S. 2018. Evaluation of landslide susceptibility mapping by evidential belief function, logistic regression and support vector machine models. Geomat Nat Hazards Risk. 9(1):1053–1070.
  • Oh H-J, Lee S. 2017. Shallow landslide susceptibility modeling using the data mining models artificial neural network and boosted tree. Appl Sci. 7(10):1000.
  • Oommen T, Cobin PF, Gierke JS, Sajinkumar K. 2018. Significance of variable selection and scaling issues for probabilistic modeling of rainfall-induced landslide susceptibility. Spat Inf Res. 26(1):21–31.
  • Ortiz JAV, Martínez-Graña AM. 2018. A neural network model applied to landslide susceptibility analysis (Capitanejo, Colombia). Geomat Nat Hazards Risk. 9(1):1106-1128.
  • Ozdemir A. 2011. Landslide susceptibility mapping using Bayesian approach in the Sultan Mountains (Akşehir, Turkey). Nat Hazards. 59(3):1573–1607.
  • Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, Church JA, Clarke L, Dahe Q, Dasgupta P. 2014. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change: IPCC.
  • Park I, Lee S. 2014. Spatial prediction of landslide susceptibility using a decision tree approach: a case study of the Pyeongchang area, Korea. Int J Remote Sens. 35(16):6089–6112.
  • Park S-J, Lee C-W, Lee S, Lee M-J. 2018. Landslide susceptibility mapping and comparison using decision tree models: a case study of Jumunjin area, Korea. Remote Sens. 10(10):1545.
  • Pearl J. 2014. Probabilistic reasoning in intelligent systems: networks of plausible inference. Amsterdam: Elsevier; p. 116-130.
  • Perlich C, Provost F, Simonoff JS. 2003. Tree induction vs. logistic regression: A learning-curve analysis. J Mach Learn Res. 4:211–255.
  • Pham BT, Bui DT, Prakash I, Dholakia M. 2017. Hybrid integration of Multilayer Perceptron Neural Networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS. Catena. 149:52–63.
  • Pradhan AMS, Kang H-S, Lee S, Kim Y-T. 2017a. Spatial model integration for shallow landslide susceptibility and its runout using a GIS-based approach in Yongin, Korea. Geocarto Int. 32(4):420–441.
  • Pradhan B. 2010. Remote sensing and GIS-based landslide hazard analysis and cross-validation using multivariate logistic regression model on three test areas in Malaysia. Adv Space Res. 45(10):1244–1256.
  • Pradhan B, Jebur MN, Abdullahi S. 2017b. Spatial prediction of landslides along Jalan Kota in Bandar Seri Begawan (Brunei) using airborne LiDAR data and support vector machine. In: Laser scanning applications in landslide assessment. Dordrecht: Springer; p. 167–178.
  • Ransom KM, Bell AM, Barber QE, Kourakos G, Harter T. 2018. A Bayesian approach to infer nitrogen loading rates from crop and land-use types surrounding private wells in the Central Valley, California. Hydrol Earth Syst Sci. 22(5):2739–2758.
  • Schlögel R, Marchesini I, Alvioli M, Reichenbach P, Rossi M, Malet J-P. 2018. Optimizing landslide susceptibility zonation: Effects of DEM spatial resolution and slope unit delineation on logistic regression models. Geomorphology. 301:10–20.
  • Seoul Special City. 2014. Supplemental investigation report of causes of Umyeonsan landslides. Seoul: Seoul Special City.
  • Sikorska A, Seibert J. 2018. Value of different precipitation data for flood prediction in an alpine catchment: a Bayesian approach. J Hydrol. 556:961–971.
  • Soni J, Ansari U, Sharma D, Soni S. 2011. Predictive data mining for medical diagnosis: an overview of heart disease prediction. IJCA. 17(8):43–48.
  • Truong XL, Mitamura M, Kono Y, Raghavan V, Yonezawa G, Truong XQ, Do TH, Tien Bui D, Lee S. 2018. Enhancing prediction performance of landslide susceptibility model using hybrid machine learning approach of bagging ensemble and logistic model tree. Appl Sci. 8(7):1046.
  • Tsangaratos P, Ilia I. 2016. Landslide susceptibility mapping using a modified decision tree classifier in the Xanthi Perfection, Greece. Landslides. 13(2):305–320.
  • UNISDR CRED. 2015. The human cost of natural disasters: a global perspective. Geneva: CRED.
  • Varnes DJ. 1958. Landslide types and processes. Landslides Eng Pract. 29:20–45.
  • Wang L-J, Guo M, Sawada K, Lin J, Zhang J. 2016. A comparative study of landslide susceptibility maps using logistic regression, frequency ratio, decision tree, weights of evidence and artificial neural network. Geosci J. 20(1):117–136.
  • Wischmeier WH, Smith DD. 1978. Predicting rainfall erosion losses-a guide to conservation planning. Predicting rainfall erosion losses-a guide to conservation planning.
  • Witten IH, Frank E, Hall MA, Pal CJ. 2016. Data mining: practical machine learning tools and techniques. Amsterdam: Morgan Kaufmann.
  • Youssef AM, Pourghasemi HR, Pourtaghi ZS, Al-Katheeri MM. 2016. Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides. 13(5):839–856.
  • Zhou S, Chen G, Fang L. 2016. Distribution pattern of landslides triggered by the 2014 Ludian earthquake of China: implications for regional threshold topography and the seismogenic fault identification. IJGI. 5(4):46.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.