1,127
Views
42
CrossRef citations to date
0
Altmetric
Original Articles

Performance analysis of advanced decision tree-based ensemble learning algorithms for landslide susceptibility mapping

ORCID Icon & ORCID Icon
Pages 1253-1275 | Received 27 Dec 2018, Accepted 19 Jun 2019, Published online: 19 Aug 2019

References

  • Akgun A. 2012. A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: a case study at Izmir, Turkey. Landslides. 9(1):93–106.
  • Akgun A, Bulut F. 2007. GIS-based landslide susceptibility for Arsin-Yomra (Trabzon, North Turkey) region. Environ Geol. 51(8):1377–1387.
  • Althuwaynee OF, Pradhan B, Lee S. 2012. Application of an evidential belief function model in landslide susceptibility mapping. Comput Geosci. 44:120–135.
  • Ayalew L, Yamagishi H. 2005. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains. Central Japan Geomorphol. 65(1–2):15–31.
  • Ayalew L, Yamagishi H, Ugawa N. 2004. Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture. Japan. Landslides. 1(1):73–81.
  • Brabb E. 1984. Innovative approaches for landslide hazard evaluation. In: Seychuk OJ, editor. Proceedings of the 4th International Symposium on Landslides; Sept 16–21;Toronto, Ontario: Canadian Geotechnical Society. p. 307–323
  • Breiman L. 2001. Random forests. Mach Learn. 45(1):5–32.
  • Breiman L. 1996. Bagging predictors. Mach Learn. 24(2):123–140.
  • Bui DT, Pradhan B, Lofman O, Revhaug I. 2012. Landslide susceptibility assessment in Vietnam using support vector machines, decision tree, and Naive Bayes models. Math Probl Eng. 2012:1–26.
  • Bui DT, Tuan TA, Klempe H, Pradhan B, Revhaug I. 2016. Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides. 13:361–378.
  • Castellanos Abella EA, Van Westen CJ. 2008. Qualitative landslide susceptibility assessment by multicriteria analysis: A case study from San Antonio del sur, Guantanamo, Cuba. Geomorphology. 94(3–4):453–466.
  • Chen W, Li WP, Hou EK, Zhao Z, Deng ND, Bai HY, Wang DZ. 2014. Landslide susceptibility mapping based on GIS and information value model for the Chencang District of Baoji. Arab J Geosci. 7(11):4499–4511.
  • Chen W, Panahi M, Tsangaratos P, Shahabi H, Ilia I, Panahi S, Li SJ, Jaafari A, Bin Ahmad B. 2019a. Applying population-based evolutionary algorithms and a neuro-fuzzy system for modeling landslide susceptibility. Catena. 172(1):212–231.
  • Chen W, Pradhan B, Li S, Shahabi H, Rizeei HM, Hou E, Wang S. 2019b. Novel hybrid integration approach of bagging-based Fisher’s linear discriminant function for groundwater potential analysis. Nat Resour Res. https://doi.org/10.1007/s11053-019-09465-w
  • Chen W, Xie XS, Peng JB, Wang JL, Duan Z, Hong HY. 2017. GIS-based landslide susceptibility modelling: a comparative assessment of kernel logistic regression, Naive-Bayes tree, and alternating decision tree models. Geomat Nat Haz Risk. 8(2):950–973.
  • Chen W, Shahabi H, Shirzadi A, Hong H, Akgun A, Tian Y, Liu J, Zhu A-X, Li S. 2018a. Novel hybrid artificial intelligence approach of bivariate statistical-methods-based kernel logistic regression classifier for landslide susceptibility modeling. B Eng Geol Environ.
  • Chen W, Shahabi H, Zhang S, Khosravi K, Shirzadi A, Chapi K, Pham BT, Zhang TY, Zhang LY, Chai HC. 2018b. Landslide susceptibility modeling based on GIS and novel bagging-based Kernel logistic regression. Appl Sci-Basel. 8(12):2540.
  • Chen W, Zhang S, Li R, Shahabi H. 2018c. Performance evaluation of the GIS-based data mining techniques of best-first decision tree, random forest, and naïve Bayes tree for landslide susceptibility modeling. Sci Total Environ. 644:1006–1018.
  • Colkesen I, Kavzoglu T. 2017. Ensemble-based canonical correlation forest (CCF) for land use and land cover classification using sentinel-2 and Landsat OLI imagery. Remote Sens Lett. 8(11):1082–1091.
  • Conoscenti C, Di Maggio C, Rotigliano E. 2008. GIS analysis to assess landslide susceptibility in a fluvial basin of NW Sicily (Italy). Geomorphology. 94(3–4):325–339.
  • Dahal RK. 2014. Regional-scale landslide activity and landslide susceptibility zonation in the Nepal Himalaya. Environ Earth Sci. 71(12):5145–5164.
  • Dahal RK, Hasegawa S, Nonomura A, Yamanaka M, Dhakal S, Paudyal P. 2008. Predictive modelling of rainfall-induced landslide hazard in the Lesser Himalaya of Nepal based on weights-of-evidence. Geomorphology. (3-4):496. 102
  • Dai FC, Lee CF, Li J, Xu ZW. 2001. Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong. Environ Geol. 40(3):381–391.
  • Delong ER, Delong DM, Clarkepearson DI. 1988. Comparing the areas under 2 or more correlated receiver operating characteristic curves - A nonparametric approach. Biometrics. 44:837–845. doi:Doi 10.2307/2531595
  • Dhakal AS, Amada T, Aniya M. 2000. Landslide hazard mapping and its evaluation using GIS: An investigation of sampling schemes for a grid-cell based quantitative method. Photogramm Eng Rem S. 66:981–989.
  • Dou J, Yunus AP, Bui DT, Merghadi A, Sahana M, Zhu ZF, Chen CW, Khosravi K, Yang Y, Pham BT. 2019. Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island. Japan. Sci Total Environ. 662:332–346.
  • Ercanoglu M, Gokceoglu C, Van Asch T. 2004. Landslide susceptibility zoning north of Yenice (NW Turkey) by multivariate statistical techniques. Nat Hazards. 32(1):1–23.
  • Erener A, Mutlu A, Duzgun HS. 2016. A comparative study for landslide susceptibility mapping using GIS-based multi-criteria decision analysis (MCDA), logistic regression (LR) and association rule mining (ARM). Eng Geol. 203:45–55.
  • Fell R, Glastonbury J, Hunter G. 2007. Rapid landslides: the importance of understanding mechanisms and rupture surface mechanics. Q J Eng Geol Hydroge. 40(1):9–27.
  • Freund Y, Scapire R. 1996. Experiments with a new boosting algorithm. In: Saitta L, editors. 13th International Conference on Machine Learning; 3–6 July; Bari, Italy, 148–156. San Francisco, CA: Morgan Kaufmann.
  • Gomez H, Kavzoglu T. 2005. Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin. Venezuela Eng Geol. 78:11–27.
  • Gu Q, Li Z, Han J. 2011. Generalized Fisher score for feature selection. Paper presented at the Proceedings of the Twenty-Seventh Conference on Uncertainty in Artificial Intelligence, Barcelona, Spain.
  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P. 1999. Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study. Central Italy Geomorphol. 31(1–4):181–216.
  • Guzzetti F, Mondini AC, Cardinali M, Fiorucci F, Santangelo M, Chang KT. 2012. Landslide inventory maps: New tools for an old problem. Earth-Sci Rev. 112(1–2):42–66.
  • Hoehler FK. 2000. Bias and prevalence effects on kappa viewed in terms of sensitivity and specificity. J Clin Epidemiol. 53(5):499–503.
  • Hong HY, Liu JZ, Bui DT, Pradhan B, Acharya TD, Pham BT, Zhu AX, Chen W, Bin Ahmad B. 2018. Landslide susceptibility mapping using J48 Decision Tree with AdaBoost, Bagging and Rotation Forest ensembles in the Guangchang area (China). Catena. 163:399–413.
  • Huang J, Wu P, Zhao X. 2013. Effects of rainfall intensity, underlying surface and slope gradient on soil infiltration under simulated rainfall experiments. Catena. 104:93–102.
  • Jenness E. 2011. An ArcGis extension for analyzing raster elevation dataset. Flagstaff (AZ): Jenness Enterprises.
  • Kadavi PR, Lee C-W, Lee S. 2018. Application of ensemble-based machine learning models to landslide susceptibility mapping. Remote Sens-Basel. 10(8):1252.
  • Kanungo DP, Arora MK, Sarkar S, Gupta RP. 2009. Landslide susceptibility zonation (LSZ) mapping: a review. J South Asia Disaster Stud. 2:81–105.
  • Kavzoglu T, Colkesen I, Sahin EK. 2019. Machine learning techniques in landslide susceptibility mapping: A Survey and a Case Study. In: Pradhan SP, Vishal V, Singh TN, editors. Landslides: Theory, practice and modelling. Cham: Springer International Publishing; p. 283–301.
  • Kavzoglu T, Sahin EK, Colkesen I. 2014. Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides. 11(3):425–439.
  • Kavzoglu T, Sahin EK, Colkesen I. 2015. Selecting optimal conditioning factors in shallow translational landslide susceptibility mapping using genetic algorithm. Eng Geol. 192:101–112.
  • Kutlug Sahin E, Ipbuker C, Kavzoglu T. 2017. Investigation of automatic feature weighting methods (Fisher, Chi-square and Relief-F) for landslide susceptibility mapping. Geocarto Int. 32(9):956–977.
  • Lanzi PL. 1997. Fast feature selection with genetic algorithms: A filter approach Proceedings of 1997 Ieee International Conference on Evolutionary Computation (Icec '97):537–540.
  • Li J, Chang JY, Wang X, Wu XB. 2011. Application of Rough Set Feature Selection in the Hazard Assessment of Debris Flow. AMR. 267:1051–1053.
  • Ma L, Cheng L, Li MC, Liu YX, Ma XX. 2015. Training set size, scale, and features in Geographic Object-Based Image Analysis of very high resolution unmanned aerial vehicle imagery. Isprs J Photogramm. 102:14–27.
  • Magliulo P, Di Lisio A, Russo F, Zelano A. 2008. Geomorphology and landslide susceptibility assessment using GIS and bivariate statistics: a case study in southern Italy. Nat Hazards. 47(3):411–435.
  • Micheletti N, Foresti L, Robert S, Leuenberger M, Pedrazzini A, Jaboyedoff M, Kanevski M. 2014. Machine learning feature selection methods for landslide susceptibility mapping. Math Geosci. 46(1):33–57.
  • Moore ID, Grayson RB, Ladson AR. 1991. Digital Terrain Modeling - a Review of Hydrological, Geomorphological, and Biological Applications. Hydrol Process. 5(1):3–30.
  • Naghibi SA, Moghaddam DD, Kalantar B, Pradhan B, Kisi O. 2017. A comparative assessment of GIS-based data mining models and a novel ensemble model in groundwater well potential mapping. J Hydrol. 548:471–483.3–71.
  • Naghibi SA, Pourghasemi HR, Pourtaghi ZS, Rezaei A. 2015. Groundwater qanat potential mapping using frequency ratio and Shannon's entropy models in the Moghan watershed. Earth Sci Inform. 8(1):171–186.
  • Nefeslioglu HA, Duman TY, Durmaz S. 2008. Landslide susceptibility mapping for a part of tectonic Kelkit Valley (Eastern Black Sea region of Turkey). Geomorphology. 94(3–4):401–418.
  • Nefeslioglu HA, Gokceoglu C, Sonmez H. 2008. An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps. Eng Geol. 97(3–4):171–191.
  • Neuhauser B, Damm B, Terhorst B. 2012. GIS-based assessment of landslide susceptibility on the base of the Weights-of-Evidence model. Landslides. 9(4):511–528.
  • Nichol J, Wong MS. 2005. Detection and interpretation of landslides using satellite images. Land Degrad Dev. 16(3):243–255.
  • Pachauri AK, Gupta PV, Chander R. 1998. Landslide zoning in a part of the Garhwal Himalayas. Environ Geol. 36(3–4):325–334.
  • Petschko H, Brenning A, Bell R, Goetz J, Glade T. 2014. Assessing the quality of landslide susceptibility maps - case study. Nat Hazards Earth Syst Sci. 14(1):95–118.
  • Pourghasemi HR, Moradi HR, Aghda SMF, Gokceoglu C, Pradhan B. 2014. GIS-based landslide susceptibility mapping with probabilistic likelihood ratio and spatial multi-criteria evaluation models (North of Tehran, Iran). Arab J Geosci. 7(5):1857–1878.
  • Pourghasemi H, Pradhan B, Gokceoglu C, Moezzi KD. 2013. A comparative assessment of prediction capabilities of Dempster–Shafer and Weights-of-evidence models in landslide susceptibility mapping using GIS. Geomatics, Nat Haz Risk. 4(2):93–118.
  • Pradhan B, Abokharima MH, Jebur MN, Tehrany MS. 2014. Land subsidence susceptibility mapping at Kinta Valley (Malaysia) using the evidential belief function model in GIS. Nat Hazards. 73(2):1019–1042.
  • Pradhan B, Jebur MN. 2017. Spatial prediction of landslide-prone areas through k-nearest neighbor algorithm and logistic regression model using high resolution airborne laser scanning data. In: Pradhan B, editor. Laser scanning applications in landslide assessment. Cham: Springer International Publishing, 151–165.
  • Rainforth T, Wood F. 2015. Canonical Correlation Forests. https://arxiv.org/pdf/1507.05444.pdf. Accessed 01 December 2017.
  • Rodríguez JJ, Kuncheva LI, Alonso CJ. 2006. Rotation forest: A new classifier ensemble method. Ieee Trans Pattern Anal Mach Intell. 28(10):1619–1630.
  • Rokach L. 2016. Decision forest: Twenty years of research. Inform Fusion. 27:111–125.
  • Rosi A, Tofani V, Tanteri L, Stefanelli CT, Agostini A, Catani F, Casagli N. 2018. The new landslide inventory of Tuscany (Italy) updated with PS-InSAR: geomorphological features and landslide distribution. Landslides. 15(1):5–19.
  • Ruiz R, Riquelme JC, Aguilar-Ruiz JS. 2008. Best Agglomerative Ranked Subset for Feature Selection. Paper presented at the Proceedings of the Workshop on New Challenges for Feature Selection in Data Mining and Knowledge Discovery at ECML/PKDD 2008, Proceedings of Machine Learning Research.
  • Sagar K, Saha A. 2017. Qualitative usability feature selection with ranking: a novel approach for ranking the identified usability problematic attributes for academic websites using data-mining techniques. Hum-Cent Comput Info. 7:1–24.
  • Sezer EA, Nefeslioglu HA, Osna T. 2017. An expert-based landslide susceptibility mapping (LSM) module developed for Netcad Architect Software. Comput Geosci-UK. 98:26–37.
  • Su QM, Zhang J, Zhao SM, Wang L, Liu J, Guo JL. 2017. Comparative assessment of three nonlinear approaches for landslide susceptibility mapping in a coal mine area. Isprs Int Geo-Inf. 6(7):228.
  • Suzen ML, Doyuran V. 2004. Data driven bivariate landslide susceptibility assessment using geographical information systems: a method and application to Asarsuyu catchment, Turkey. Eng Geol. 71(3–4):303–321.
  • Tsangaratos P, Ilia I, Hong HY, Chen W, Xu C. 2017. Applying Information Theory and GIS-based quantitative methods to produce landslide susceptibility maps in Nancheng County, China. Landslides. 14(3):1091–1111.
  • Vasu NN, Lee SR. 2016. A hybrid feature selection algorithm integrating an extreme learning machine for landslide susceptibility modeling of Mt. Woomyeon, South Korea. Geomorphol. 263:50–70.
  • Wang LJ, Guo M, Sawada K, Lin J, Zhang JC. 2015. Landslide susceptibility mapping in Mizunami City, Japan: A comparison between logistic regression, bivariate statistical analysis and multivariate adaptive regression spline models. Catena. 135:271–282.
  • Witten IH, Frank E. 2005. Data mining: Practical machine learning tools and techniques. San Francisco, CA: Morgan Kaufmann.
  • Xia JS, Yokoya N, Iwasaki A. 2017. Hyperspectral image classification with canonical correlation forests. IEEE Trans Geosci Remote Sensing. 55(1):421–431.
  • Yalcin A. 2008. GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): Comparisons of results and confirmations. Catena. 72(1):1–12. English.
  • Yilmaz I. 2009. A case study from Koyulhisar (Sivas-Turkey) for landslide susceptibility mapping by artificial neural networks. Bull Eng Geol Environ. 68(3):297–306.
  • Youssef A, Pourghasemi H, El-Haddad B, Dhahry B. 2016. Landslide susceptibility maps using different probabilistic and bivariate statistical models and comparison of their performance at Wadi Itwad Basin, Asir Region, Saudi Arabia. Bull Eng Geol Environ. 75(1):63–87.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.